REPRODUCTIVE AND DEVELOPMENTAL BIOLOGY OF *GONATOCERUS ASHMEADI*, AN EGG PARASITOID OF THE GLASSY-WINGED SHARPSHOOTER

Project leader: Mark Hoddle Dept. of Entomology University of California Riverside, CA 92521 **Cooperator:** Leigh Pilkington Dept. of Entomology University of California Riverside, CA 92521

Reporting period: The results reported here are from work conducted from April 2004 to October 2004.

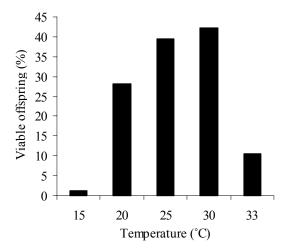
ABSTRACT

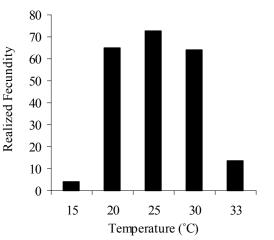
The reproductive and developmental biology of *Gonatocerus ashmeadi* Girault, a self-introduced parasitoid of the glassywinged sharpshooter (GWSS) *Homalodisca coagulata* Say, was determined at five constant temperatures in the laboratory; 15; 20; 25; 30; and 33°C. Wasps at each experimental temperature were given, on average, between 10 and 15 GWSS eggs per day for its natural life for oviposition. At 30°C, immature *G. ashmeadi* sustained the highest mortality rates as adult emergence was lowest at this temperature. The largest proportion of female offspring was produced at 25°C and lifetime fecundity was greatest at 25°C. The development time was greatest at 15°C and lowest at 30°C. Mean adult longevity was inversely related to temperature with a maximum of approximately 30 days at 15°C to a minimum of approximately two days at 33°C.

INTRODUCTION

The mymarid wasp species *Gonatocerus ashmeadi* Girault, *G. triguttatus* Girault, *G. morrilli* Howard, and *G. fasciatus* Girault are the most common natural enemies associated with the insect pest *Homalodisca coagulata* in it's home range of southeastern USA and northeastern Mexico (Triapitsyn and Phillips, 2000). The wasp *G. ashmeadi* is a self-introduced resident of California and most likely came into the state in parasitized *Homalodisca coagulata* eggs (Vickerman et al., 2004) and has established widely in association with *H. coagulata*.

One factor that can limit the success of the establishment of natural enemies is mismatching the environmental conditions favored by the introduced agent with those that predominate in the receiving range (Hoddle, 2004). Quantification of the reproductive and developmental biology of a natural enemy is paramount to predicting, planning, and promoting the establishment and population growth of introduced agents. This can be enhanced by determining demographic characteristics such as day-degree requirements for immature development, population doubling times and lifetime fecundity for estimating population growth rates at various temperatures and for comparison with the target pest and other species of biological control agents. Determining the introduced control agent's reproductive and developmental biology and environmental requirements with that of the host will allow for a greater understanding of factors affecting biological control of GWSS.


The following work was undertaken to provide information on the reproductive and developmental biology of the parasitoid wasp *G. ashmeadi*. These data will provide knowledge of the insect's life cycle, in particular in relation to GWSS, and will improve the understanding of optimal timings of its release for biological control purposes in many agricultural systems as well as improve the efficiency of laboratory rearing of these insects. In addition to improving release and rearing strategies, this information will target foreign exploration of strains of *G. ashmeadi* for possible introduction into California and also identify geographical areas that will be conducive to the use of this species as biological control agent following GWSS establishment in various parts of California and in areas such as Tahiti and Hawaii where GWSS has recently invaded.


OBJECTIVES

1. Examine the developmental and reproductive biology of *G. ashmeadi* in order to determine its day-degree requirements, and demographic statistics.

RESULTS

The rates for oviposition that led to successful reproduction of offspring were highest at 30° C (Figure 1). Each wasp at each temperature, on average, had the same number of GWSS eggs made available to them for oviposition. At 30° C, approximately 42% of eggs presented to wasps produced into viable parasitoid offspring. Conversely, this rate decreased with temperature to 1% at 15°C. Higher temperatures similarly lowered the production of viable offspring with approximately 13% surviving to adult stages at 33°C. These results suggest that *G. ashmeadi* progeny survivorship was most successful when oviposition occurred at 30° C, intermediate at $20-25^{\circ}$ C and lowest at 15° C.

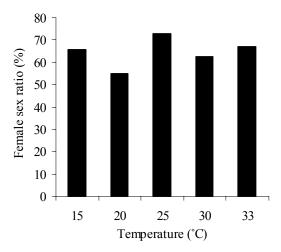

Figure 1. Mortality rates fell as temperatures rose until 30°C. Few viable offspring were produced at 33°C. The highest percentage of viable offspring from available eggs was at 30°C.

Figure 2. The average number of offspring emerging from parasitized eggs at each temperature. Parasitized eggs that did not yield viable offspring are not represented here.

The number of offspring produced by individual wasps over their lifetime was greatest at 25°C and fell sharply as temperature either increased of decreased (Figure 2). Approximately 73 offspring were produced by wasps at 25°C down to an average of around 4 and 14 at 15°C and 33°C, respectively. These data show that at constant high or low temperatures wasps fail to produce many offspring and may have little or no impact on GWSS population growth as a consequence.

There appeared to be no trends to the ratios of females produced at each experimental temperature (Figure 3). The highest percentage of females was produced at 25°C with approximately 70% of offspring being female. All other temperatures were, with the exception of 20°C, were within 10% of this temperature. These results indicate that temperature may not play an important role in the sex selection of *G. ashmeadi* offspring.

The time between eggs being made available to individual wasps and the emergence of offspring, fell from a high of approximately 39 days at 15°C to approximately 10 days for 30 - 33°C (Figure 4). As temperature rose, the time required for the development of wasp larvae was reduced. This faster development time at higher temperatures suggests that wasps will cycle through several generations in comparison to GWSS.

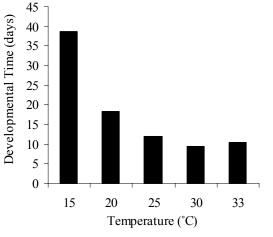
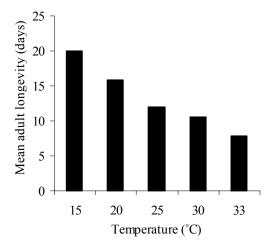



Figure 3. The percentage of *G. ashmeadi* offspring that was identified as female at each temperature.

Figure 4. The period of time between oviposition by *G. ashmeadi* and the emergence of wasp offspring represented in days.

Mean adult longevity for individual mated female *G. ashmeadi* used in this study fell from an average of approximately 20 days at 15°C to approximately eight days at 33°C (Figure 5).

Figure 5. The average time, in days, from when mated females used in the study first emerged to when they died of natural causes.

CONCLUSIONS

The wasps at 30°C died quicker (figure 5) and laid fewer eggs (figure 3) than wasps at 25°C. This difference was offset by the findings that the individuals at 30°C successfully utilized a higher percentage of the eggs that were made available to them than those at 25°C. Whilst individuals at 30°C produced fewer viable offspring, it is possible that as a population effect greater numbers of offspring may be produced due to a faster generation turnover and higher rate of parasitism overall. Wasps at 30°C will cause a population to grow at a much faster rate due to the wasp ovipositing in, largely, an equal number of eggs. The success of the wasp at this temperature is indicative of the much shorter developmental times whereby the wasp will produce offspring that develop at much faster rates. Individual wasps surviving for extended periods of time were observed at 15°C and declining in a linear manner as temperature rose. Whilst wasps at 15°C, for example, survived considerably longer than at other temperatures their efficacy was affected by the temperature and made very little impact on the number of offspring produced.

The success of a biological control agent is measured by the mortality it inflicts on its target which is in part a function of its reproductive and developmental activity across a range of temperatures (Nahrung and Murphy, 2002). The results from this study suggest that *G. ashmeadi* operates most effectively at moderate to high temperatures. Identifying the optimal temperature for reproduction and developmental of *G. ashmeadi*, will greatly aid mass-rearing efforts, using day-degree models to predict geographic range, to assess generational turnover in various locales in comparison to GWSS and to optimize releases of natural enemies into a field environment.

REFERENCES

- Hoddle M.S., 2004. The potential adventive geographic range of glassy-winged sharpshooter, *Homalodisca coagulata* and the grape pathogen *xylella fastidiosa*: Implications for California and other grape growing regions of the world. Crop Protect. 23, 691-699.
- Nahrung H.F., Murphy, B.D., 2002. Differences in egg parasitism of *Chrysophtharta agricola* (Chapuis) (Coleoptera : Chrysomelidae) by *Enoggera nassaui* Girault (Hymenoptera : Pteromalidae) in relation to host and parasitoid origin. Austral. J. Entomol. 41, 267-271.
- Triapitsyn S.V., Phillips, P.A., 2000. First record of *Gonatocerus triguttatus* (Hymenoptera : Mymaridae) from eggs of *Homalodisca coagulata* (Homoptera : Cicadellidae) with notes on the distribution of the host. Florida Entomologist 83, 200-203.
- Vickerman D.B., Hoddle, M.S., Triapitysn, S.V., Stouthamer, R., 2004. Species identity of geographically distinct populations of the glassy-winged sharpshooter parasitoid *Gonatocerus ashmeadi*: Morphology, DNA sequences and reproductive compatibility. Biol. Cont. *In Press*.

FUNDING AGENCIES

Funding for this project was provided by the CDFA Pierce's Disease and Glassy-winged Sharpshooter Board.