A Simple Sampling Plan for Persea Mite in Avocado Orchards

Ricky Lara University of California, Riverside Entomology Department

Fopics Persea Mite Biology Economic Importance Estimating Persea Mite Densities Half-Vein Method Absence-Presence Method Method Evaluation How to Collect Avocado Leaves Conclusions Future Research

Persea Mite Biology

- 5 stages
- Feeding on leaf undersurface
- Feeding areas turn into necrotic (dead) spots
- Defoliation and fruit sunburn
- Population buildup in late summer

Control Strategies

Biological Control:

• predatory mites, Neoseiulus californicus

Pesticides:

- Abamectin, new pesticides coming soon
- Threshold ≥100 mites per leaf

How do you estimate density of persea mites?

Oursein 1. Is there a method to estimate persea mite densities on avocado leaves? 2. How reliable (accurate) is this method in the field and under lab conditions? 3. Are there other methods to estimate persea mite densities?

Work in Avocado Orchards

Field Observations

Systematic Leaf Collection

Flagging Trees

Bring Leaves to Lab

Distance Between Trees

Count Mites!

Quebeud	NLLeaves	Observed Mean		0(Emer
Orchard	N Leaves	Observed Mean	Hair-vein (Microscope)	% Error
1	1608	8	4	47
2	240	37	34	8
3	240	42	21	50
4	240	49	29	40
5	247	77	30	61
6	239	205	100	51
7	240	208	110	47
8	240	307	171	44
8	240	342	212	38
9	260	528	214	60

Half-Vein Method Evaluation

Orchard	N Leaves	Observed Mean	Handlens/Optivisor	% Error
1	1608	8	3	62
6	239	205	68	67
7	240	208	63	70
9	260	528	134	75

Data Summary						
County	Year	Trees	No. of Leaves	No. of Sets	Mites Counted	
Ventura	1997	42	6,469	16	88,372	
Orange	1999	66	5,280	8	232,548	
Orange	2000-01	42	17,220	41	74,267	
Orange	2003/05	9-17	4,190	31	151,092	
Ventura, Santa Barbara (SB)	2009	30	1,207	5	205,584	
Ventura, SB, Orange	2010	30-402	2,348	4	249,350	
		Total:	36,714	105	1,001,213	

11

How would it work in the field?

Randomly Select Leaves (20 minimum)

Look at Undersurface

Search for Persea Mites

Present: 1

Calculate Proportion Infested

Conclusion

3. Is there another method to estimate persea mite densities that involves less counting and is reliable?

Answer: Yes, a reliable absence-presence method can be customized for the avocado system.

Currently fine tuning the method: How to collect leaves in an orchard?

Collecting Avocado Leaves

- 1. Are mite counts higher on specific cardinal points on a tree (N, E, S, W)?
- 2. Are mites on a tree influencing mite densities on other neighboring trees?

Goal: Reduce bias in estimating mite densities!

Results of Spatial Analyses						
Orchard	Cardinal Effect?	p-value	Outcome	Spatial Correlation?	Trees To Skip	p-value
7	No	0.30		No	0	0.50
8	Yes	0.004	E>N, W	Yes	1	0.039
4	No	0.21		Yes	1	0.023
3	Yes	0.01	W>N	Yes	3	0.047
6	Yes	0.004	S,W>N	Yes	3	0.0002
9	No	0.080		Yes	4	0.047

1. Are mite counts higher on specific cardinal points on a tree?

Answer: Yes, in some orchards cardinal directions have higher mite counts but there isn't a consistent pattern across all orchards.

2. Are mites on a tree influencing mite densities on other neighboring trees?

Answer: Yes, in some orchards there is spatial correlation. To obtain an independent sample you should skip at least 4 trees.

Future Research

- Combine the absence-presence method with the spatial work to design a cost-effective sampling scheme:
- Invest less time counting mites and have a reliable estimate of persea mite levels during the growing season

Take Home Message

- Counting persea mites on leaves is a tedious process!
- The Half-Vein method underestimates mean mite densities
- A statistically reliable Absence-Presence method can reduce the counting effort in the field
- Mite counts can influence densities on other trees and this needs to be accounted for in the sampling scheme

Thanks

Funding:

NSF AGEP UCR Cota Robles Fellowship UC Hansen Trust Western Region IPM

Collaborators:

UCR Statistics Department California Avocado Commission Steve Naranjo (USDA-ARS) Various PCAs and Growers

Lab Assistance:

Ruth Amrich, Allison Bistline, Mike Lewis, Naseem Saremi, Martin Castillo, John Jones, Nick Salvato

JLara007@ucr.edu

