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ABSTRACT 

It is well known that sequential hypothesis test procedures can have appreciable cost 
savings compared to fixed sample size test plans. The first sequential hypothesis 
procedure was developed by Wald for one-parameter families of distributions and later 
extended by Bartlett to handle the case of nuisance parameters. However, Bartlett’s 
procedure requires independent and identically distributed observations. In ecological 
applications, it is common for data to exhibit spatial correlations. We illustrate the 
existence of spatial correlations in pest count data by analyzing the spatial structure in a 
data set of mite counts. The goal of this paper is to show how to incorporate the existence 
of spatial correlation into a sequential hypothesis testing framework so that applications 
such as pest management can improve the accuracy of their treat or no-treat decisions.  
 

Keywords: Sequential Hypothesis Testing, Generalized Linear Mixed Models, Integrated 
Likelihood. 

1. INTRODUCTION 

Sequential hypothesis testing procedures are often utilized within the agriculture industry 
as a cost effective approach to pest density assessments (Fowler and Lynch 1987, Mulekar et. 
al. 1993, Binns et. al. 2000, Young and Young 1998). In these applications, Wald’s (1947) 
Sequential Probability Ratio Test (SPRT) is the most often used approach. As discussed by 
Wald and Wolfowitz (1948), when compared to the most efficient fixed sample size 
procedures, the SPRT often requires only half as many observations to be sampled, which can 
amount to a significant savings in the cost of sampling. 
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In pest assessment applications, the goal of Wald’s SPRT is to distinguish between two 
simple hypotheses about a parameter θ  that reflects pest density (e.g., the mean or median 
number of pests per sampling unit): 

 

0 0 1 1 1 0H : H : ( )θ θ θ θ θ θ= = > . 
 
Here, 0θ  would represent an acceptable pest density, below which no treatment 

intervention (e.g., spraying with insecticide or release of natural enemies) is required, and 1θ  
represents an unacceptable pest density which calls for treatment in an attempt to ward off 
serious crop loss. A real-life limitation to the use of Wald’s SPRT procedure is that it requires 
there be no unknown nuisance parameters (i.e., unknown parameters in the model that are not 
of primary interest). Many applications of Wald's SPRT eliminate nuisance parameters by 
replacing them with educated guesses. However, Bartlett (1946) proved in the independent 
and identically distributed (IID) case that a simple modification to Wald's SPRT is sufficient 
to preserve the type-1 (falsely reject 0H ) and type-2 (falsely accept 1H ) error rates of the 
sequential test procedure. Shah et. al. (2009) recently advocated the use of Bartlett’s 
sequential procedure in the context of IID pest count applications. 

The application we consider in this paper concerns orchards of trees which are typically 
organized into blocks that can be individually assessed and treated for pests individually, as 
necessary. Correctly understanding the spatial distribution of the pest is crucial when deciding 
which blocks to treat so as to minimize treatment costs and maximize treatment benefits. 
Neglecting spatial dependencies could result in improper judgment of pest densities that lead 
to incorrect decisions about the need for treatment. Spatial analyses have been previously 
used in the study of a diverse group of pests of agricultural importance such as lentils 
(Schotzko and O’Keeffe 1989), corn-alfalfa crop rotation system (Williams et al. 1992), 
cotton (Gozé et al. 2003), and grapes (Ifoulis and Savopoulou-Soultani 2006, Ramírez-Dávila 
and Porcayo-Camargo 2008). However, in all of the above studies, spatial analyses were 
conducted using transformed count data in an attempt to satisfy normality assumptions. This 
transformation approach has limitations, particularly for sparse count data (Gotway and 
Stroup 1997). 

Generalized Linear Mixed Models (GLMM) are statistical models which are particularly 
useful for modeling discrete response variables (e. g., counts) that may exhibit correlation 
(Breslow and Clayton 1993). As an extension to the generalized linear model, a GLMM 
contains both fixed effects and random effects in the link function. GLMM’s have been used 
across multiple scientific disciplines, including ecological studies of pest populations (Candy 
2000, Elston et. al. 2001, Barchia et. al. 2003, Paterson and Lello 2003, Elias et. al. 2006, 
Bennett et. al. 2008, Bianchi et. al. 2008, Takakura 2009). 

In this paper, we combine a GLMM that has spatial structure in its random effects with 
use of a sequential probability ratio test to test for critical pest densities. First, we describe the 
spatial GLMM we have in mind, and then demonstrate the usefulness of it by analyzing the 
spatial structure of real count data measured for the persea mite (O. perseae). The persea mite 
is an avocado leaf feeding pest that is native to Mexico and is a serious invasive pest in 
California (USA), Costa Rica, Israel, and Spain (Hoddle 2005). Second, we propose a pest 
assessment sampling methodology that is suited for contexts where periodic assessments are 
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to be made to determine if pest treatments are necessary. Our proposed sampling plan consists 
of a first occasion fixed sample followed by sequential samples on each subsequent 

monitoring occasion. On each sampling occasion, 0H  versus 1H  will be tested. 

2. MODEL DEVELOPMENT 

2.1. Spatial GLMM 

The negative binomial distribution is a common distribution in pest control studies due to 
its flexibility in handling over dispersed count data (i.e., variance is larger than the mean). 
Useful for our development of a suitable spatial GLMM is recognition of an equivalent way 
of arriving at the commonly used negative binomial distribution. Suppose that a pest count Y 
has a Poisson distribution with mean θ . We write the probability function of Y as 

( | ) exp( ) / !yp y yθ θ θ= − , for {0 ,1 , }y∈ K . Suppose θ  randomly varies between 
sampling units, following a gamma distribution with degrees of freedom κ  and rate λ . We 
write the density function of θ as 1( ) exp( ) / ( )f κ κθ λ θ λθ κ−= − Γ , for 0 and 0μ κ≥ > , 
respectively.  

Writing /rμ λ= , it is easy to verify that the unconditional probability function for Y is 
 

( )( )
( 1) ( )

y
yp y

y

κ
κ κ μ
κ κ μ κ μ

⎛ ⎞ ⎛ ⎞Γ +
= ⎜ ⎟ ⎜ ⎟Γ + Γ + +⎝ ⎠ ⎝ ⎠

 , {0 ,1 , }y∈ K  

 
which is the classically used negative binomial distribution with mean μ  and over-dispersion 

parameter κ . It can be shown that that the variance of Y is 2 /μ μ κ+ . 
While the negative binomial distribution nicely incorporates over-dispersion, it does not 

address spatial correlation that may exist between the observations. Beginning with the 
negative binomial distribution, we use another type of conditioning approach to achieve that 
purpose. Let ijkY  be the pest count of the k-th sampled leaf collected from the j-th cardinal 

direction (hereafter referred to as quadrants) of the i-th tree, with 1, ,i n= L , 1, , 4j = L  
and 1, ,k m= K . We note that it is widely appreciated that pests sometimes choose a (e.g., 
based on morning versus afternoon sun exposure) specific quadrant (N, S, W, E) within a tree 
to nest. Let 4

1{ }j jγ =  denote the fixed quadrant effect, and 1( , , )nS S S ′= K
%

 denote spatially 

correlated random tree effects. Our proposed spatial GLMM is defined as follows 
 

2

. Negative Binomial ( , )~

. log( )

. ~ (0, ( ))

ijk i ijk

ijk j i

inda Y S
b S
c S MVN

μ κ
μ γ

σ ρ
= +

Σ
%%

  (1) 
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where ijkμ  is the (conditional on iS ) mean of ijkY  and 2 ( )σ ρΣ
%

 is the spatial exponential 

covariance structure whose ( , )i i′  element is ,exp( / )i id ρ′− , where ρ  is a scale parameter 

that dictates the strength of the spatial correlation, and ,i id ′  is the Euclidean distance between 

the -thi and -thi′ tree. Because of equation (1a) the observations within a tree will still be 
modeled by the flexible over-dispersed negative binomial distribution, but because of 
equations (1b) and (1c) the observations between different trees are modeled as spatially 
correlated. 

Let 1 2 3 4( , , , )γ γ γ γ γ ′=
%

denote fixed quadrant parameters and 2( , , )σ ρ κ ′Θ =
%

denote 

the variance parameters of the GLMM described by (1). The integrated likelihood function is 
 

( )

4

1 1 1

2

( ) exp( )
( , )

( 1) ( ) exp( ) exp( )

                                                                   ; ( )

ijk

n

Y
n m ijk j i

R i j k ijk j i j i

Y s
L

Y s s

s ds

κ
κ γ κγ
κ κ γ κ γ

ϕ σ ρ

= = =

⎧ ⎫⎡ ⎤ ⎡ ⎤Γ + +⎪ ⎪Θ = ∏∏∏ ⎢ ⎥ ⎢ ⎥∫ ∫ ⎨ ⎬Γ + Γ + + + +⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

× Σ

L
%%

%% %

  (2) 

 
where the expression inside the braces is the product of negative binomial probabilities based 
on the conditional mean structure defined by equation (1). The function ( )2; ( )sϕ σ ρΣ

%%
 is the 

n-dimensional multivariate normal density function corresponding to the random tree effects 
S
%

. Because n is relatively large, evaluating the likelihood function using numerical 
integration techniques such as quadrature rules are not feasible. Quadrature approximations 
are usually only feasible in this context when the random effects are uncorrelated (i.e., no 
spatial correlation) in which case the integral in equation (2) would reduce to a product of 
one-dimensional integrals. 

2.2. MODEL FITTING 

The approach we take to fitting the spatial GLMM is based on the method of pseudo-
likelihood that was proposed in Wolfinger and O'Connell (1993). A sketch of this method, as 
it applies to (1) is now given. Let 11 1 41 4( , , , , , , )i i i m i i mY Y Y Y Y ′= K K K

%
 denote the 

vector of pest counts collected from the i-th tree and denote the corresponding vector of 
conditional means as 11 1 41 4( , , , , , , )i i i m i i mμ μ μ μ μ ′= K K K

%
. Let 

1 2( , , , )nY Y Y Y′ ′ ′ ′= K
% % % %

 and 1 2( , , , )nμ μ μ μ′ ′ ′ ′= K
% % % %

. Denote a vector of a ones by aJ  and let 

aI  denote the a a×  identity matrix. With the usual definition of Kronecker product between 

two matrices, namely ijA B a B⎡ ⎤⊗ = ⎣ ⎦ , define the 4 4mn×  matrix 4( )n mX J I J= ⊗ ⊗
%

 

and the 4 4mn×  matrix 4n mZ I J= ⊗
%

. Then equation (1b) can be written in vector notation 
as log X Z Sμ γ= +

% % %% %
. 
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To proceed with the pseudo-likelihood approach, we informally write e Y μ= −
%% %

 , or 

exp( )e Y X ZSγ= − +
% % %% %%

, where the second term is understood to be a vector whose t-th 

element is exp( )t tx z Sγ′ ′+
%% %%

, and where 1 2 3 4( , , , )t t t t tx x x x x′ =
%

 and 

1 2( , , , )t t t tnz z z z′ = K
%

 denote the t-th rows of X
%

 and Z
%

, respectively, ( 1 , , 4t mn= K ). 

Consider a first-order Taylor expansion of each element in e
%

 about an initial guess 0 0( , )Sγ
%%

, 

where 0 10 20 30 40( , , , )γ γ γ γ γ ′=
%

 and 0 10 20 0( , , , )nS S S S ′= K
%

. Denoting this by e
%

, we 

have (in vector notation) ( )0 0 0 0ˆ ( )e Y D X X ZS ZSμ μ γ γ= − − − + −
% % % % %% % %% % % %

, where 

0 0( ) ( )D Diagμ μ=
% % %

 and 0 0 0exp( )X ZSμ γ= +
% % %% %

. 

A consequence of equation (1a) is that 2ˆ( | ) ( ) ( ) /Var e S D Dμ μ κ= +
% %% % % %

, and if 0 0( , )Sγ
%%

 

is close to the true value, then we will have ˆ( | ) 0E e S �
% % %

. The conditional distribution of ê
%

, 
given S

%
, is unknown so the pseudo-likelihood approach heuristically assumes it is 

approximately multivariate normal. That is, it is assumed that 

( )1 2ˆ | 0 , ( ) ( )e S MVN D Dμ κ μ−≈ +
% %% % % % %

, where the symbol ≈  denotes ‘is approximately 

distributed as.’ Replacing μ
%

 by 0μ
%

 in this approximation then leads to 

 

( )1 1 1
0 0 0 0 0( )( ) | , ( )D Y X Z S S MVN X ZS D Iμ μ γ γ μ κ− − −− + + ≈ + +

% % % % % % % %% % %% % % % %
. 

 
Defining the so-called pseudo-response variable 1

0 0 0 0( )( )v D Y X Z Sμ μ γ−= − + +
% % % %% %% % %

 , 

we see that it can be characterized as (approximately) following a classical linear mixed 
model v X ZSγ ε= + +

% %% % %%
, with 2~ (0, ( ))S MVN σ ρΣ

%%
 and independent of 

1 1
0~ ( 0 , ( ) )MVN D Iε μ κ− −+

% %% % %
. 

A classical linear mixed model analysis can now be used to get the next iteration 

1 1( , )Sγ
%%

. In particular, for a fixed Θ
%

, the maximum likelihood estimate of γ
%

 is given by 
1 1 1( ) ( ( ) ) ( )X H X X H vγ − − −′ ′Θ = Θ Θ&

% % % % %% % % %%
 , where 2 1 1

0( ) ( ) ( )H Z Z D Iσ ρ μ κ− −′Θ = Σ + +
% % % % % %% %

, 

and the best linear unbiased predictor for S
%

 is 2 1( ) ( ) ( )( ( ))S Z H v Xσ ρ γ−′Θ = Σ Θ − Θ& &
% % % %% % % % %%

. 

Then next iteration is thus 1 1
ˆ ˆ( , ) ( ( ) , ( ) )S Sγ γ= Θ Θ&&

% % % %% %
 , where Θ̂

%
 is the maximum likelihood 

estimate obtained by maximizing (e.g., via Newton’s method) the corresponding log profile 
likelihood 

 

11 1( ) log ( ) ( ) ( ) ( )
2 2Pl H v X H v Xγ γ−′⎡ ⎤ ⎡ ⎤Θ = − Θ − − Θ Θ − Θ⎣ ⎦ ⎣ ⎦& &

% % % %% % % % % % %% %
. 

This iterative procedure is repeated until the difference between successive iterate values 
are judged to be inconsequential. 
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3. EXAMPLE 

3.1. Data Collection 

Mite counts were collected during the summer of 2009 from two blocks of trees, taken 
from two different commercial ‘Hass’ avocado orchards (A and B) located in Carpinteria, 
California, USA. Trees in both orchards were planted on relatively flat terrain according to a 
grid system consisting of rows and columns. Eight leaves were collected from each tree with 
2 leaves randomly taken from each quadrant. A total of 30 trees on a 5 x 6 grid were sampled 
from the block in orchard A and a total of 60 trees on a 5 x 12 grid were sampled from the 
block in orchard B. All sampled leaves were examined under a stereoscopic microscope and 
the number of live mites was counted. 

3.2. Data Analysis 

Fitting the count data to the model in equation (1), using the pseudo-likelihood algorithm 
described above, produces the parameter estimates that are shown in Table I. The estimates of 
the spatial scale parameter ρ indicate significant spatial correlation exists in Block B. For 
example, the estimated correlation between mite counts taken from adjacent trees is 
exp( 0.69) 0.23− = . 

On the other hand, in Block A the estimate of ρ  is zero, suggesting the counts are not 
spatially correlated. The estimates of the tree-to-tree variance parameter 2σ  shows there is 
more variability between trees in Block A than Block B, and the estimate of the parameter κ  
shows the counts in Block A are more overly dispersed than the counts in Block B. The 
estimated quadrant effects γ

%
 shows that the counts in Block B have a much higher mean, and 

this leads to a higher overall variance as well. Tests of 0 1 2 3 4:H γ γ γ γ= = =  are rejected for 
both blocks, indicating unequal quadrant effects. Follow-up pair wise comparisons show that 
for Block A, the East and West quadrants are equally ‘hot’ and for Block B the West and 
South quadrants are equally ‘hot.’ 

Figure 1 shows 95% prediction intervals for the estimated conditional (on S
%

) 
distributions of counts based on model (1). The dots are the observed mite counts plotted 
against the fitted conditional mean counts where the random tree effects have been replaced 
by their empirical best linear unbiased predictor, ˆ( )S Θ&

% %
. The solid lines are the 95% 

prediction intervals computed for each observation using the fitted conditional means together 
with the corresponding fitted negative binomial distribution. The capture rate (97.5% for 
Block A and 94% for Block B) and the manner in which the dots span the distance between 
the tolerance bands (when there are enough observations to see that) is a good reflection that 
the Spatial Negative Binomial GLMM fits the data well. 
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Figure 1. 95% Prediction Bands for Conditional Negative Binomial Distributions. 

 
Table I. Fit of Spatial GLMM with Samples from Two Orchards 

 
Parameter Block A Estimates Block B Estimates 
ρ  5.96e-12 0.69 

2σ  2.54 1.44 

κ  0.40 1.80 

1γ  (East ) 2.19 5.40 

2γ  (North) 2.14 5.09 

3γ  (West) 3.24 5.25 

4γ  (South) 2.89 4.95 

4. SAMPLING PLAN FOR PERIODIC PEST ASSESSMENT 

Our proposed sampling plan is designed with knowledge that pest assessment is done 
periodically throughout each year. It is not uncommon, for example, to sample a block two or 
three times each year to determine if treatment is necessary. With that in mind, our proposed 
plan uses a fixed-size sample on the first visit to the block to estimate the magnitude of the 
spatial correlation in the block, and then uses that information to create a more efficient 
sequential sampling plan for subsequent visits to the block. 
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4.1. First Occasion Fixed-Size Sample 

For the first occasion sampling, m leaves per tree are sampled from all four quadrants 
from adjacent trees in the middle of the block. Block sizes are typically on the order of 
40 40× , so sampling on the order of 5% of the trees is a good rule of thumb for getting 
enough information about potential spatial correlation. Sampling two leaves per quadrant will 
usually be sufficient to quantify the within tree variation in the pest counts. Once this data is 
collected, the GLMM in equation (1) can be fit, as discussed in Section 3. It is shown in that 
section how it can be determined if the pest associates to a ‘hot’ quadrant and if so, which one 
it is. Let γ  denote the quadrant parameter corresponding to the identified ‘hot’ quadrant. 

In terms of deciding on whether or not to treat the block, the parameter of interest is 
exp( )θ γ= , which represents the median of the conditional means associated with the 

GLMM in equation (1). A relevant one-sided hypothesis is 0H : ETθ θ≤  vs. 1H : ETθ θ> , 

where ETθ  is the economic threshold (ET) for pest counts. That is, the pest count value for 
which the cost of treatment is equal to the cost of incurred crop damage in the absence of 
treatment. Typically, ETθ  is the midpoint between the 0θ  and 1θ  values that were introduced 

in Section 1. Equivalently, the hypothesis can be expressed as 0H : log ETγ θ≤  vs. 

1H : log ETγ θ> , which can be tested by using the standard error of γ̂  to construct a upper 

100(1 )%α−  confidence bound for γ . If the upper confidence bound is greater than 

log ETθ , then 0H : log ETγ θ≤  should be rejected and treatment should be applied to the 
block. Otherwise, no treatment is necessary for the block. 

4.2. Subsequent Occasion Sequential Samples 

The data collected from the first occasion fixed size sample the provides the information 
needed to develop the subsequent efficient sequential sampling schemes. In particular, the 
estimate of the spatial range parameter ρ  allows one to determine how to sample trees to 
mute the effects of spatial correlation. As a rule of thumb, the so-called ‘practical sampling 
range’ is the distance at which the correlation between counts on two trees is reduced to 0.05 
or less (Schabenberger and Gotway 2005). This distance can be determined once an estimate 
of ρ  is available. When trees are sampled beyond the practical sampling range, the sampling 
is described as ‘out of range’ sampling. The first occasion sample also identifies the ‘hot’ 
quadrant. 

On each subsequent occasion where a treatment decision is to be made, we propose a 
sequential sample of randomly selected out of range trees, taking a single leaf from the ‘hot’ 
quadrant. Sampling in this way satisfies the assumptions needed to use Bartlett’s SPRT 
(1946) procedure for testing the simple versus simple hypothesis 0 0H : logγ θ=  vs. 

1 1H : logγ θ=  , which allow us to control simultaneously the type-1 and type-2 errors. For 

convenience, define 0 0logγ θ=  and 1 1logγ θ= . 
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4.2.1. Model Definition 
Referring to equation (1), the data collected for the subsequent occasion samples will 

follow the reduced GLMM: 
 

2

. Negative Binomial ( , )~

. log

. (0, )~

i i i

i i

i

ind

iid

a Y S
b S
c S N

μ κ
μ γ

σ
= +  (3) 

 
where iY  is the count recorded from the leaf sampled from the i-th tree, and γ  is the effect of 

the ‘hot’ quadrant. Note that, unlike the model in equation (1), the iS  in equation (3) are 
independent since for subsequent sampling occasions the trees are sampled out of range. It 
can be shown that equation (3) implies that the unconditional mean and variance of iY  are 

 
2

2 2 2

E( )    exp( / 2)
Var( )  exp( / 2) exp(2 2 )(1 1 / ) exp(2 ) .

i

i

Y
Y k

γ σ
γ σ γ σ γ σ

= +

= + + + + − +
 

4.2.2. Bartlett’s SPRT 
Applying Bartlett’s SPRT to the observations 1 2{ , , }Y Y K , the sequential test for 

subsequent sampling occasions is based on the log likelihood ratio 
 

2 2
1 1 1 0 0 0ˆ ˆˆ ˆlog{ ( ; , ( ) , ( )) / ( ; , ( ) , ( ))}n n n n n n nf Y f Yλ γ σ γ κ γ γ σ γ κ γ=

% %
. 

 
Here, n  denotes the current number of observations collected in the sequential sample, 

1( , , )n nY Y Y ′= K
%

 and 

 
2 2/22

1

( ) exp( ) 1( ; , , )
( 1) ( ) exp( ) exp( ) 2

i

i

i

Yn
si i

n i
i i i is

Y sf Y e ds
Y s s

κ
σκ γ κγ σ κ

κ κ γ κ γ πσ
−

=

⎡ ⎤ ⎡ ⎤Γ + +
= ⎢ ⎥ ⎢ ⎥Γ + Γ + + + +⎣ ⎦ ⎣ ⎦
∏∫%

 (4) 

 
Equation (4) is the joint marginal distribution of the data, integrating out the random 

effects 1{ }n
i iS = . The one-dimensional integral in equation (4) is easily done using Gaussian 

quadrature. For 0 1{ , }γ γ γ∈ , the values 2ˆ ( )nσ γ  and ˆ ( )nκ γ  denote the conditional MLEs of 

the unknown nuisance parameters 2σ  and κ . These conditional MLEs are obtained by 
setting γ  in equation (4) to 0γ  or 1γ , respectively, and then maximizing the right hand side 

with respect to 2σ  and κ . Define ln( /(1 ))A β α= −  and ln((1 ) / )B β α= − . The stop 

boundaries of Bartlett’s SPRT are to accept 0H  at the first n for which n Aλ ≤ , to accept 

1H  at the first n for which n Bλ ≥ , and to continue by sampling another tree if nA Bλ< < . 
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The type-1 and type-2 error rates will approximately satisfy 0 0Pr (Reject H | H ) α≤  and 

1 1Pr (Reject H | H ) β≤ , respectively. 

4.2.3. Illustration 
To illustrate, suppose a practitioner wants to test 0 1H : 3   vs.  H : 5θ θ= =  , or 

equivalently, 0H : 1.1γ =  vs. 1H : 1.6γ = , and that the first occasion sample determined 
that the out of range sampling distance is 4 trees and that the East quadrant is the ‘hot’ 
quadrant. Sampling on subsequent occasions will then be single leafs taken from the East 
quadrant of trees that are randomly sampled from a grid of every 5th tree. Due to the fact that 
Bartlett’s SPRT utilizes conditional maximum likelihood estimates of the nuisance 
parameters 2σ  and κ , collecting an adequate number of initial samples to ensure these 
estimates exist and are (reasonably) reliable before initiating Bartlett’s SPRT is necessary. 
This issue of how large the initial sample size needs to be is discussed further in the next 
section. For our illustration, we suppose it is decided to begin Bartlett’s SPRT after an initial 
sample of 9 leaves has been collected. Based on nominal type-1 and type-2 errors equal to 
0.1, each value of nλ  , beginning with 9λ , is compared to the stop boundaries 2.2A = −  and 

2.2B = . The sequential sample terminates at the first n  for which either n Aλ ≤  or 

n Bλ ≥ , and continues by sampling another leaf if nA Bλ< < . 

Figure 2 depicts a hypothetical plot of nλ  for the sequence of pest counts: 5, 0, 2, 8, 2, 3, 
3, 4, 10, 3, 2, 5, 4, 6, 5, 3, 0, 3, 0, 2, 0, 1. After the 9th observation was collected, Bartlett’s 
SPRT was initiated as defined via (3) and (4), and the first value for the plot in Figure 2 
corresponds to 9λ . The SPRT procedure stops at 22 trees and because 22 2.489λ = −  is less 

than the lower stopping boundary 2.2A = − . The sequential procedure terminates by 
accepting the null hypothesis and concluding there is no need to treat the block. 
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Figure 2. Hypothetical Sample Path for Bartlett’s SPRT. 

4.2.4. Starting Sample Size for Bartlett Test 
The Operating Characteristic (OC) curve and the Average Sample Number (ASN) curve 

are usually used as performance criteria for a sequential procedure (Shah et al. 2009). OC( )θ  
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is defined as the probability of accepting 0H  when θ  is the true value of the parameter 

(Govindarajulu 2004). A desirable OC function will have 0OC( )θ  and 1OC( )θ  close to 

1 α−  and β , respectively. ASN( )θ  is defined as the expected value of the number of 
observations required to reach a decision when θ  is the true value of the parameter. It is, of 
course, desirable to have ASN values as small as possible, provided that 0OC( )θ  and 

1OC( )θ  are close to their nominal values.  
As mentioned above, Bartlett’s SPRT has actual type-1 and type-2 error rates that are 

only approximately equal to the nominal values, and sufficient accuracy of the approximation 
depends on having a large enough number of initial samples before the Bartlett SPRT 
procedure formally begins. For a suitably large initial sample size, the initial wild variability 
in the nλ  values will be suppressed and kept from exerting an undo influence on the stopping 
time of the sequential procedure. One way to appreciate the importance of a suitable starting 
sample size is the fact that calculating nλ  requires using conditional MLEs for the nuisance 
parameters, and these parameters will not estimated very precisely until the number of 
samples collected reaches a reasonable size. For example, until the number of samples is at 
least equal to the number of parameters in the model, these estimates will not even exist. In 
this section, we report the results of a small simulation study to show the effect of the initial 
sample size on the realized type-1 and type-2 errors of Bartlett's SPRT.  

Our simulation generates data under the model in equation (4) and uses the data analysis 
in Section 3.2 to guide the selection of the parameters. In particular, we choose 

2 {0.5 ,1.0}σ ∈  and {1 , 2 , 3}κ ∈ . For each of the six combinations of 2( , )σ κ , we 

carried out a simulation study in which we used Bartlett's SPRT to test 0H : ( ) 50E Y =  

versus 0H : ( ) 100E Y = . (The values 50 and 100 are action thresholds currently utilized by 

practitioners for the persea mite.) Since 
2 /2E( )Y eγ σ+= , the corresponding values of 

0 1( , )γ γ  depend on the value of 2σ . In particular, to achieve 0( | ) 50E Y H =  and 

1( | ) 100E Y H = , we used 0 1( , ) (3.66 , 4.36)γ γ =  for 2 0.5σ = , and used 

0 1( , ) (3.41 , 4.11)γ γ =  for the case 2 1.0σ = . Table II shows the mean and standard 

deviation for Y under both 0H  and 1H  for the different simulation scenarios. 
Within each simulation study, we varied the initial sample size that was collected prior to 

formally beginning Bartlett's SPRT. In each case, 1000 sample paths were generated for each 
of the two cases 0γ γ=  and 1γ γ= . For each value of γ  we estimated the probability of 

accepting 0H  by the fraction of sample paths that reached the ‘Accept 0H ’ decision. Table 
III shows the initial sample size that was needed to achieve type-1 and type-2 error rates that 
are close to the nominal values of 0.10. We can see that as the variance in the counts gets 
larger (i.e., larger 2σ  and, to some extent, larger k) we have the intuitive result that the initial 
sample size needs to be larger. It seems that an initial sample size of 8-10 would be 
satisfactory for most pest assessment applications that utilize the model in equation (4). 

 



Judy X. Li, Daniel R. Jeske, Jesús R. Lara et al. 280 

Table II. Mean and Variance of Simulated Data under 0H  and 0H  
 

 
2σ  

 
κ  0H  1H  

E( )Y  Var( )Y  E( )Y  Var( )Y  
0.5 1 50 76 100 152 
 2 50 61 100 122 
 3 50 55 100 110 
1.0 1 50 106 100 211 
 2 50 88 100 176 
 3 50 81 100 162 

 
Table III. Type-1 and Type-2 Error Rates for Alternative Starting Sample Sizes 
 

2σ  κ  
Initial Sample Size Simulation Estimates of Error Rates 

Type-1 Type-2 
0.5 1 4 .100 .121 
 2 4 .083 .112 
 3 4 .063 .068 
1.0 1 9 .107 .123 
 2 7 .106 .116 
 3 7 .106 .116 
 

3

6

9

12

15

18

3 3.5 4 4.5 5
γ

A
SN

1k =

2k =

3k =

0γ 1γ
3

6

9

12

15

18

3 3.5 4 4.5 5
γ

A
SN

1k =

2k =

3k =

0γ 1γ

 

Figure 3. ASN Curve for 2 0.5σ = and 0 1( , ) (3.66 , 4.36)γ γ = . 

We also used the 1000 sample paths to estimate the ASN curve for a range of 11 values 
of γ  that include 0γ  and 1γ . Figures 3-4 show the ASN curves for the two cases 2 0.5σ =  

and 2 1.0σ = , respectively. The figures show the intuitive result that fewer samples are 
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required to make a decision when the variance in the counts is less (i.e., smaller 2σ  and 
larger k). 
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Figure 4. ASN Curve for 2 1.0σ = and 0 1( , ) (3.41 , 4.11)γ γ = . 

SUMMARY 

We advocate the use of spatial generalized linear mixed models to analyze pest counts. 
Our analyses of the persea mite counts we collected demonstrate that spatial correlation in 
this type of data is real and can be expected. We showed how the generalized linear mixed 
modeling approach can be used to develop a periodic pest assessment sampling plan that 
features a first occasion fixed sample size and subsequent occasion sequential sample. Our 
proposed integration of spatial generalized linear mixed models and sequential sampling is a 
novel aspect of our work. The sampling plan we have proposed is practical, and the detailed 
description we have provided should be sufficient to enable use by pest control advisors. 
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