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SAMPLING AND BIOSTATISTICS

Sequential Hypothesis Testing With Spatially Correlated
Presence-Absence Data

ELIJAH DEPALMA,1 DANIEL R. JESKE,1,2 JESUS R. LARA,3 AND MARK HODDLE3

J. Econ. Entomol. 105(3): 1077Ð1087 (2012); DOI: http://dx.doi.org/10.1603/EC11199

ABSTRACT A pest management decision to initiate a control treatment depends upon an accurate
estimate of mean pest density. Presence-absence sampling plans signiÞcantly reduce sampling efforts
to make treatment decisions by using the proportion of infested leaves to estimate mean pest density
in lieu of counting individual pests. The use of sequential hypothesis testing procedures can signif-
icantly reduce the number of samples required to make a treatment decision. Here we construct a
mean-proportion relationship for Oligonychus perseae Tuttle, Baker, and Abatiello, a mite pest of
avocados, from empirical data, and develop a sequential presence-absence sampling plan using
BartlettÕs sequential test procedure. BartlettÕs test can accommodate pest population models that
contain nuisance parameters that are not of primary interest. However, it requires that population
measurements be independent, which may not be realistic because of spatial correlation of pest
densities across trees within an orchard. We propose to mitigate the effect of spatial correlation in a
sequential sampling procedure by using a tree-selection rule (i.e., maximin) that sequentially selects
each newly sampled tree to be maximally spaced from all other previously sampled trees. Our proposed
presence-absence sampling methodology applies BartlettÕs test to a hypothesis test developed using
an empirical mean-proportion relationship coupled with a spatial, statistical model of pest populations,
with spatial correlation mitigated via the aforementioned tree-selection rule. We demonstrate the
effectiveness of our proposed methodology over a range of parameter estimates appropriate for
densities of O. perseae that would be observed in avocado orchards in California.

KEY WORDS BartlettÕs sequential test, binomial sampling, generalized linear mixed model

Neglecting the spatial structure of pest populations
can result in an inaccurate estimation of pest densities.
Spatial analyses have been previously used in studies
of diverse groups of pests of agricultural crops such as
lentils (Schotzko and OÕKeeffe 1989), cotton (Gozé et
al. 2003), and grapes (Ifoulis and Savopoulou-Soultani
2006, Ramṍrez-Dávila and Porcayo-Camargo 2008). In
all these studies, spatial analyses were conducted by
Þrst transforming count data so as to resemble con-
tinuous, normally distributed data. Generalized linear
mixed models (GLMM), however, are statistical mod-
els that are particularly useful for modeling discrete
response variables that may be correlated (Breslow
and Clayton 1993), such as spatially correlated count
data or presence-absence data. GLMMs have been
used across multiple scientiÞc disciplines, including
ecological studies of pest populations (Candy 2000,
Bianchi et al. 2008, Takakura 2009). In this article, we
propose a spatial GLMM for a sequential presence-
absence sampling program for Oligonychus perseae,
Tuttle, Baker, and Abatiello (Acari: Tetranychidae), a
pest mite of avocados (Persea americanaMiller [Lau-

raceae]) in California as an example for developing
this modeling approach.

The persea mite,O. perseae, is native to Mexico and
is an invasive pest in California, Costa Rica, Spain, and
Israel. It is a foliar pest of avocados and is most dam-
aging to the popular ÔHassÕ variety that accounts for
94% of the total production acreage in California (Cal-
ifornia Avocado Commission [CAC] 2009), it is worth
�$300 million each year, and �6,000 growers farm
�27,000 ha of this cultivar (CAC 2010). Feeding by
high-density populations of O. perseae can cause ex-
tensive defoliation to avocados (Hoddle et al. 2000),
and in California this pest is typically controlled with
pesticides (Humeres and Morse 2005). A scientiÞcally
based action threshold and economic injury level
(EIL) has not been calculated for O. perseae in Cal-
ifornia. However, work from Israel suggests that the
EIL lies between 100 and 250 mites per leaf and the
recommended action threshold is in the range of 50Ð
100 mites per leaf (Moaz et al. 2011).

Counting O. perseae mites with a hand lens in the
Þeld is tedious, time consuming, and an inaccurate
approach to monitor population densities for making
control decisions. An alternative approach is pres-
ence-absence or binomial sampling, which estimates
pest population density using the proportion of leaves
infested with at least one mite versus the proportion
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of clean leaves with no mites. Presence-absence sam-
pling is fast, simple, and allows large areas to be sur-
veyed quickly to quantify pest damage. Presence-ab-
sence sampling programs have been developed for a
variety of agricultural pests including other spider
mite species, eriophyid mites, aphids, ßea beetles, leaf
hoppers, whiteßies, mealybugs, and leaf miners (Ala-
tawi et al. 2005, Binns et al. 2000, Galvan et al. 2007,
Hall et al. 2007, Hyung Lee et al. 2007, Kabaluk et al.
2006, Martinez-Ferrer et al. 2006, Robson et al. 2006).

Sequential sampling procedures are considered a
cost effective approach to assessing pest densities
(Mulekar et al. 1993, Young and Young 1998, Binns et
al. 2000). Cost savings accrue in comparison to Þxed
sample size procedures, because sequential proce-
dures often require a signiÞcantly reduced number of
sampled observations to reach a treatment decision,
which can result in appreciable savings in the cost of
sampling. In applications of sequential sampling,
WaldÕs (1947) sequential probability ratio test (SPRT)
is the most often used approach. WaldÕs SPRT is useful
for sampling programs when it can be assumed that,
aside from the primary parameter of interest, there are
no additional unknown parameters (i.e., nuisance pa-
rameters) in the model.

In the case of independent and identically distrib-
uted (IID) samples, a modiÞcation to WaldÕs SPRT
results in BartlettÕs (1946) SPRT, which can be applied
to pest count models containing nuisance parameters
(Shah et al. 2009). However, spatial correlation of pest
populations violates the independence assumption re-
quired for BartlettÕs SPRT. In related work on spatially
correlated pest count data, Li et al. (2012) proposed
a Þrst-stage initial sample used to assess the effective
range of spatial correlation, followed by a second-
stage sampling procedure in which each sampled ob-
servation is outside of the effective range of all pre-
viously sampled observations. Sampling outside of the
effective range eliminates any spatial correlation so
that BartlettÕs SPRT may be applied. In this article, we
propose to sequentially sample observations for O.
perseae so that each sampled observation is maximally
spaced from all other previously sampled observa-
tions, thereby eliminating spatial correlation. This
sampling strategy eliminates the necessity of an initial,
Þrst-stage sample as proposed by Li et al. (2012), and

we demonstrate its effectiveness for mitigating spatial
correlation sufÞciently to allow the application of Bar-
tlettÕs SPRT for a range of parameter estimates appro-
priate toO. perseae in California avocado orchards. To
our knowledge, this article is the Þrst to combine
sequential hypothesis testing techniques with pres-
ence-absence sampling strategies that account for spa-
tial correlation of pest densities.

Materials and Methods

Mean-Proportion Relationship. The essential com-
ponent of a presence-absence sampling plan is an
accurate relationship between the mean pest density,
M, and the proportion of leaves infested with at least
one pest individual, P. The mean-proportion relation-
ship can be modeled using an empirical equation
(Kono and Sugino 1958, Gerrard and Chaing 1970),
which has been used to develop binomial sampling
plans for pests (Hall et al. 2007, Martinez-Ferrer et al.
2006),

ln(�ln�1 � P�) � a � b � ln�M� [1]

The parameters a and b can be Þt using linear regres-
sion.

To construct a mean-proportion relationship forO.
perseae,Hass avocado leaves were collected randomly
from nine avocado orchards in Southern California
across various years (Table 1), and counts of all O.
perseae stages (except eggs) were performed using
stereomicroscopes. Seventy-two mite count data sets
(incorporating 30,656 leaves with a density range of
0Ð342 mites per leaf) were used to Þt equation 1, with
resulting parameter estimates a � �1.72762 and b �
�0.66527. This relationship is shown in Fig. 1 where
we plotted the 72 data pairs of mean pest density per
leaf and proportion of infested leaves, along with the
Þtted empirical equation 1.
Presence-Absence Sampling Hypothesis Test. The

mean-proportion relationship allows a pest control
adviser to estimate the mean density of mites per leaf
without counting individual mites. This is achieved by
sampling a number of leaves and determining the
proportion of leaves for which at least one mite is
present. In our context, we use the mean-proportion
relationship to convert an action threshold for mite

Table 1. Summary information for the avocado orchards in California from which count data were collected to construct a
mean-proportion relationship for O. perseae

Orchard County Year sampled Trees sampled No. leaves No. sets

1 Ventura 1997 42 6,469 16
2 Orange 1999 66 5,280 8
2 Orange 2000Ð2001 42 17,220 41
3 San Diego 2009 31 247 1
4 Santa Barbara 2009 30 240 1
5 Santa Barbara 2009 30 240 1
6 Santa Barbara 2009 30 240 1
7 Santa Barbara 2009 30 240 1
8 Ventura 2010 30 240 1
9 Ventura 2010 30 240 1

In total, 72 data sets, each measuring the proportion of infested leaves and the mean leaf mite density, were used to Þt the empirical equation
1. The 72 data points and the resulting Þtted curve are graphed in Fig. 1.
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densities per leaf into an action threshold for propor-
tion of infested leaves.

Moaz et al. (2011) determined an action threshold
range forO. perseaemite densities to be 50Ð100 mites
per leaf. Using the lower bound of this range we
construct a statistical decision problem for interven-
tion treatment by proposing the following hypothesis
test for mean mite densities, M:

H0:M � 25
mites

leaf
vs. H1:M � 75

mites

leaf
.

Because the midpoint of this range is 50 mites/leaf, if
the null hypothesis,H0, is rejected in favor ofH1, then
mite densities are above 50 mites/leaf and treatment
is recommended. Failure to reject H0 in favor of H1

implies that mite densities are below 50 mites/leaf and
treatment is unnecessary.

Using equation 1 we may explicitly write P as a
function of M,

P � 1 � exp{�exp�a � b � ln M�}, [2]

and using the above parameter estimates for a and b
we convert the hypothesis test forM into the following
hypothesis test for P:

H0:P � 0.78 vs. H1:P � 0.95.

In a binomial sampling plan, the number of infested
leaves (i.e., leaves with at least one mite present) in a
randomly selected sample of leaves follows a binomial
distribution, with the only unknown model parameter
being the proportion of infested leaves, P. The hy-
pothesis test for P may be evaluated using WaldÕs
SPRT, which is the most efÞcient procedure for eval-
uatingahypothesis testof simplehypotheseswhen the
underlying model contains only a single, unknown
parameter (Wald 1947). However, from our Þeld ob-
servation and analysis of O. perseae count data (Li et
al. 2012), mite populations were shown to cluster on
individual avocado trees, with neighboring trees hav-
ing similar population densities. This spatial correla-

tion did not exist once sampled trees were 3Ð4 trees
distant from the last sampled tree (Li et al. 2012).
Thus, to more accurately evaluate the above hypoth-
esis test and make a decision regarding treatment, a
model must be developed that accounts for the ag-
gregation of mites on individual trees and the spatial
correlation of mite densities across trees.
Spatial GLMM. To account for the aggregation of

mites on individual trees we constructed a Bernoulli
response GLMM in which the proportion of infested
leaves varies by tree, as determined by a Þxed effect
common to all trees and a random effect that varies
from tree to tree. To account for the spatial correlation
of mite densities among trees we allow the random
tree effects in the GLMM to be spatially correlated.
SpeciÞcally, suppose that we select n trees to be sam-
pled, and that on each tree we randomly sample m
leaves. For i� 1,É,n, on the ith tree let pi be proportion
of infested leaves, 0 � pi � 1, and let Yij be the
corresponding Bernoulli (pi) response for the jth leaf
sampled, j � 1,É,m, where Yij � 1 if at least one mite
is present andYij� 0 otherwise. Let � denote the Þxed
effect common to all trees, let �S � �S1,. . .,Sn�� denote

the spatially correlated random tree effects for the n
trees sampled, and let Yi equal the sum of the m

Bernoulli responses for the ith tree, Yi � �
j�1

m
Yij.

Therefore, our proposed spatial GLMM is deÞned as:

Yi��S � Binomial�m, pi�

logit� pi� � log� pi

1 � pi
� � � � Si [3]

�S � MVN��0, ��� �multivariate normal�,

where �� is the n	 n covariance matrix for the random

tree effects whose off-diagonal elements determine
the correlation structure. We propose allowing for a
spatially symmetric correlation structure in which the
correlation between the random effects of two trees
decreases exponentially with the distance between

Fig. 1. Plotted values of data sets for O. perseae, each measuring the proportion of infested leaves and the mean mite
density per leaf, and a graph of the Þtted empirical equation 1.
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the trees, known as a spatial exponential correlation
structure (Schabenberger and Gotway 2005). With
this correlation structure, the (i, i�) element of �� is

�2 exp(�di,i�/	), where di,iÕ is the Euclidean distance
between the i-th and iÕ-th trees, 	 is a scale parameter
that dictates the strength of the spatial correlation, and
�2 is a scale parameter that determines the variability
of the random tree effect on an individual tree. Under
this parameterization it can easily be shown that the
effective range of the spatial correlation is 3	, and that
for tree-separation distances beyond this range the
spatial correlation is essentially diminished (Schaben-
berger and Gotway 2005).
Spatial GLMM Hypothesis Test. It follows from

equation 3 that for each tree the proportion of infested
leaves, pi, is a logit-normal random variable with pa-
rameters � and �2. Although the mean of a logit-
normal random variable cannot be analytically related
to its parameters, a simple analytic relation exists be-
tween � and the median of pi,

� � log� median� pi�

1 � median� pi�
� . [4]

In the spatial GLMM model the proportion of infested
leaves varies from tree to tree, and a pest manager
seeking to make a treatment decision for an entire
orchard may use median (pi) as a measure of the
proportion of infested leaves over the entire orchard.
Thus, using the spatial GLMM the hypothesis test we
previously derived forO. perseae in terms of Pmay be
converted into a hypothesis test for � as follows:

H0:� � log� 0.78

1 � 0.78� � 1.27 vs. H1:�

� log� 0.95

1 � 0.95� � 2.94. [5]

Hence, the median pest density over an entire orchard
is determined by the spatial GLMM parameter �,
whereas �2, and 	 are nuisance parameters.
Bartlett’s SPRT. In a model without nuisance pa-

rameters, WaldÕs SPRT is the most efÞcient test of
simple hypotheses, requiring the minimum number of
expected samples among all hypothesis tests with the
same Type-1 (falsely reject H0) and Type-2 (falsely
fail to reject H0) error rates. In a model that contains
nuisance parameters, Bartlett (1946) proved that, if
the samples are independent and identically distrib-
uted (IID), then the Type-1,-2 error rates are asymp-
totically preserved if the nuisance parameters are re-
placed with their conditional maximum likelihood
estimates at each stage of the sequential testing pro-
cedure.

In the context of this study, the IID assumption of
BartlettÕs SPRT is achieved if spatial correlation is not
present, and in a subsequent section we propose a
tree-selection rule that effectively diminishes any spa-
tial correlation. Hence, throughout this section we
presume that our proposed spatial GLMM has been
reduced to a GLMM with no spatial correlation (	 �
0) to which BartlettÕs SPRT may be applied.

We apply BartlettÕs SPRT to the observations


Y1,Y2,. . .�, where Yi is the number of mite-infested
leaves on the ith tree among them leaves sampled, with
m determined in the next section. The sequential test
for subsequent sampling occasions is based on the
log-likelihood ratio,


n � log
 f��Yn;�1,�̂n
2��1��/f��Yn;�0,�̂n

2��0���.

[6]

Here, n denotes the current number of trees sampled

in the sequential procedure, �Yn � �Y1,. . .,Yn�� are the

current observed responses, and the likelihoods are
obtained from equation 3 by integrating out the ran-

dom effects, �Sn � �S1,. . .,Sn��, assuming 	 � 0,

f��Yn;�,�2� � � . . .� nf��Yn��Sn� � f��Sn�d�Sn

� � . . .� n	

i�1

n � mYi �piYi�1 � pi�
m�Yi�

� 	 1

��2��n����
exp��

1

2�Sn����1�Sn��d�Sn

� 

i�1

n �� mYi �� exp�� � Si�

1 � exp�� � Si��
Yi

�1 �
exp�� � Si�

1 � exp�� � Si��
m�Yi

�
1

�2��2
exp

��
1

2�2Si
2�dSi� . [7]

Equation 7 consists of a product of n one-dimensional
integrals, each of which is easily numerically evaluated
using GaussÐHermite quadrature. For � � 
�0,�1�, �̂n

2���
denotes the conditional MLE of the unknown nuisance
parameter �2 obtained by setting � in equation 7 to �0

or �1, respectively, and then maximizing the right-
hand side with respect to �2. For the hypothesis test
in equation 6 used to make a treatment decision forO.
perseae, �0 � 1.27 and �1 � 2.94.

The upper and lower stopping boundaries of Bar-
tlettÕs SPRT are

A � ln� 

1 � �� and B � ln�1 � 

� � , [8]

respectively, so that BartlettÕs SPRT rejectsH0 in favor
of H1 at the Þrst n for which 
n � B, fails to reject H0

in favor of H1 at the Þrst n for which 
n � A and
continues by sampling another tree ifA 
nB.The
resulting Type-1 and Type-2 error rates asymptotically
satisfy P(Reject H0H0) � � and P(Fail to reject
H0H1) � , respectively, so that � and  are Type-1,2
error rate upper bounds, respectively.
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Leaf-Selection Rules and Sampling Cost. To deter-
mine the optimal number of leaves to sample per tree,
m, and assuming that our tree-selection rule has ef-
fectively diminished spatial correlation (	 � 0), we
conducted a simulation study to analyze average sam-
ple numbers (ASN) of BartlettÕs SPRT applied to the
hypothesis test in equation 6, over a range ofm and �2

parameter values appropriate toO. perseae, and Type-
1,-2 error rate upper bounds of � � 0.10 and  � 0.10.

LetN denote the number of sampled trees required
to reach the stopping rule in BartlettÕs SPRT. As the
number of leaves sampled per tree, m, increases, the
expected number of sampled trees, E(N) decreases,
but the expected total number of sampled leaves, m �
E(N) increases (see the Results section for details). To
determine an optimal value for m, we constructed a
simple sampling cost function that includes a sampling
cost for each tree and an additional sampling cost for
each leaf:

Cost � �cost per tree� � N � �cost per leaf� � m � N

[9]

For a given value of m the expected cost, E(Cost),
depends on E(N) that varies with �. For each value of
m, we evaluate E(N) at the value of �, say �max, for
which E(N) is maximized. We choose m to minimize
the expected cost, which up to a constant of propor-
tionality can be written as:

E�Cost� � �1 � cm� � E�N���max
,

where c �
cost per leaf

cost per tree
. [10]

In practice, the costs associated with selecting an ad-
ditional leaf should be much less than the costs asso-
ciated with selecting and locating an additional tree, so
that the leaf-to-tree cost ratio, c, should be much less
than one. Given a value of c 1, E(Cost) versus m is
plotted and in the resulting graph an optimal value of
c  1, E(Cost) versus m is chosen so as to minimize
E(Cost).
Sequential Maximin Tree-Selection Rule. To miti-

gate spatial correlation of mite counts between adja-

cent trees we propose to sequentially select each tree
to be maximally spaced from all other previously se-
lected trees. We base our notion of Ômaximally spacedÕ
on a maximin distance criterion, in which each tree is
selected so as to maximize the minimum distance it has
to all other previously selected trees. A design con-
structed by this rule has been referred to as a Ôcoffee-
houseÕ design for the similar way in which customers
select their tables in a coffee-house (Müller 2007).

In a nonsequential, Þxed-size spatial sampling set-
ting, maximin designs possess optimality properties
that we now brießy describe. In a Þxed-size sampling
setting, a maximin design simultaneously selects all
points so that the minimum distance between all pairs
of selected points is maximized. The index of a Þxed-
size maximin design is the number of pairs of points
separated by this maximal, minimum distance. For any
statistical model in which the correlation between two
points is a decreasing function of the distance between
the two points, a Þxed-size maximin design of smallest
index is asymptotically related to an optimal design
that minimizes the variances of parameter estimates
(Johnson et al. 1990). This result enables the con-
struction of an asymptotically optimal Þxed-size sam-
pling design based on geometric criteria alone.

In the context of this article, we adopt the above
notion of ÔindexÕ to a sequential, maximin tree-selec-
tion rule, as follows. At each stage in the sequential
procedure, we deÞne a maximin tree to be a tree (not
necessarily unique) whose minimum distance to all
previously selected trees is maximal. The index of a
maximin tree is deÞned to be the number of previously
selected trees separated by this maximal, minimum
distance. Our proposed sequential, maximin tree-se-
lection rule is to select a maximin tree of smallest
index.

In Fig. 2 we provide a visual illustration of the
sequential, maximin tree-selection rule applied to a
20 	 20 grid of equally spaced trees, demonstrating
how the Þrst 13 trees are selected.
Evaluation of Proposed Methodology. Our pro-

posed methodology for developing a presence-ab-
sence sampling plan is to use the mean-proportion

Fig. 2. Visual illustration of the sequential, maximin tree-selection rule applied to a 20 	 20 grid of trees, demonstrating
how the Þrst 13 trees are selected. Here we arbitrarily chose the Þrst tree selected to be the lower, left-hand corner tree.
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relationship coupled with the spatial GLMM to con-
struct the treatment decision hypothesis test in equa-
tion 5, to which we apply BartlettÕs SPRT coupled with
the sequential, maximin tree-selection rule and the
leaf-selection rule. We validate the proposed meth-
odology by verifying that the sequential, maximin
tree-selection rule successfully diminishes spatial cor-
relation sufÞcient to preserve the Type-1,2 error rates
of BartlettÕs SPRT applied to the hypothesis test in
equation 5, for a range of �2 and 	 parameter values
appropriate to O. perseae.

In a simulation study we simulated presence-ab-
sence data from a spatial GLMM for a range of values
of the spatial correlation parameter, 	, and the nui-
sance parameter, �2, appropriate to O. perseae. As-
suming the optimal leaf selection rule ofm� 6 leaves
per tree (see Results section), we simulated data from
a 20 	 20 grid of 400 equally spaced trees. For each
simulation we evaluated the hypothesis test in equa-
tion 5 by applying BartlettÕs SPRT with Type-1,2 error
rate upper bounds of � � 0.10 and  � 0.10. However,
we truncated BartlettÕs SPRT so that the maximum
possible number of trees sampled is 10% of the or-
chard, or 40 trees in this example. If a stopping rule had
not been reached after 40 trees had been sampled,
then the sequential procedure was halted and a de-
cision made based on whether the sequential hypoth-
esis test statistic, 
40, was closer to B the stopping rule
upper boundary (reject H0), or closer to A, the stop-
ping rule lower boundary (fail to reject H0).

We compared the sequential, maximin tree-selec-
tion rule to several other tree-selection rules, all of
which are illustrated in Fig. 3: 1) border selection,
where trees were sampled along the orchard borders;
2) diagonal selection, where trees were sampled along
a diagonal in the orchard; 3) zigzag selection, where
the lower orchard border is sampled, followed by the
orchard diagonal, followed by the upper orchard bor-

der; 4) grid selection, where trees were sampled on a
gridpatternuniformly spaced throughout theorchard;
5) SRS selection, where trees were selected using
simple random sampling throughout the orchard. In
Fig. 3 we indicate the order in which trees were
selected in decreasing size from largest to smallest.
Although all 40 trees are designated for each truncated
sequential hypothesis test, in practice the average
number of trees sampled to reach a stopping rule
typically ranged between 5 and 10 trees.

We caution the reader to distinguish between the
SRS tree-selection rule, which at each sequential step
randomly selects a tree from all remaining trees over
the entire orchard, and what might be referred to as
a random tree-selection rule in which a pest manager
walks through a grove haphazardly, randomly select-
ing trees to sample. Because this latter type of tree-
selection rule does not sequentially select trees to be
spaced far apart, our results from patterned tree-se-
lection rules suggest that it will not mitigate spatial
correlation sufÞciently to apply BartlettÕs sequential
test.

Results

Illustrated Examples: Sample Parameter Estimates.
Various statistical software packages implement
model Þtting and parameter estimation for GLMMs,
such as SAS Proc Glimmix. To provide realistic pa-
rameter estimates for O. perseae distributions in avo-
cado orchards we Þtted the spatial GLMM model,
equation 3, to four presence-absence sets of data, with
the Þtted parameters provided in Table 2. Based on
these estimates, in the simulation studies we allowed
�2 to vary from 0.5 to 2.0, and 	 to vary from 0 to 5.0.
Leaf-Selection Rules: Outcome. Fig. 4 shows ASN

curves for the expected number of sampled trees, and
Fig. 5 shows ASN curves for the expected total number

Fig. 3. The six tree-selection rules for which we evaluated the error rates of BartlettÕs SPRT. The size indicates the order
of tree selection from largest to smallest. We truncated the sequential hypothesis test at an upper bound of 40 trees, all of
which are graphed here. However, in all cases the sequential hypothesis test typically terminated after sampling the Þrst 5Ð10
trees.
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of sampled leaves, where each point was obtained
using 20,000 simulations. We observe that as more
leaves per tree were sampled (i.e., asm increases), one
expects to sample fewer trees but more total leaves.
The ideal choice for m minimizes the expected cost,
E(Cost), that depends upon the leaf-to-tree cost ratio,
c. In Fig. 6, E(Cost) versus m is plotted for several
values of c  1, c � 0.01, 0.10. 0.25, and 0.50. We
observe that asm increases beyond six leaves per tree
the expected cost does not signiÞcantly decrease for
smaller values of c and �2, and increases for larger
values of c and �2. Thus, for O. perseae we conclude
that, if spatial correlation has been effectively dimin-
ished, then an ideal leaf-selection rule for evaluating
the hypothesis test in equation 5 that applies to a range
of parameter values and leaf-to-tree sampling cost
ratio values is to randomly selectm� 6 leaves per tree.
Evaluation of Proposed Methodology: Outcome.

Figs. 7 and 8 display the results of our simulation study,
which show how the observed Type-1 and Type-2
errors vary in the truncated sequential hypothesis test
as the strength of spatial correlation increases from 0
to 5.0. Each point was obtained using 20,000 simula-
tions, and the percentage of simulations for which the

stopping rule was not reached after sampling 40 trees
was negligibly small, never exceeding 1.5%. All of the
patterned tree-selection rules show strong inßations
of the observed Type-1, 2 error rates, from which we
conclude that patterned tree-selection rules cannot be
used in BartlettÕs SPRT if spatial correlation is present.
Although the SRS tree-selection rule performs better
than the patterned tree-selection rules, the sequential,
maximin tree-selection rule outperforms all other
tree-selection rules, preserving the 10% Type-2 error
rate over the range of parameters tested, and preserv-
ing the10%Type-1error rateup toa spatial correlation
strength of 	 � 2.0.

The estimates for the spatial correlation parameter
reported in Li et al. (2012), based on count data,
ranged from 0.24 to 1.55, so that a reasonable range of
study for 	 was taken to be 0Ð2.0. Our presence-
absencedataanalyses suggest allowing 	 to increaseup
to 5.0. More typically, we do not expect 	 to achieve
values beyond 2.0, but this extended range was used to
introduce robustness into our conclusions. In Figs. 7
and 8, as 	 ranges from 0 to 2.0 we see that our
proposed methodology consistently preserves the
Type-1 and Type-2 error rates. Even if the spatial
correlation is as high as 5.0, the proposed methodology
still preserves the Type-2 error rates, although the
Type-1 error rates become slightly elevated. In the
context of making a treatment decision based on an
action threshold, making a Type-2 error corresponds
to failing to treat an orchard forO. perseaewhen mite
densities are �50 mites/leaf and treatment is neces-
sary, and making a Type-1 error corresponds to
treating an orchard when mite densities are below
50 mites/leaf and treatment is unnecessary. Thus,
using our proposed methodology, even under high
levels of spatial correlation, a pest manager will not
fail to treat a grove needing treatment, but may

Table 2. Parameter estimates for four sets of O. perseae pres-
ence-absence data fitted to the spatial GLMM model, equation 3

Orchard n m � �2 	

4 30 8 1.53 1.67 1.06
5 60 8 5.48 0.00024 0.073
8 400 4 3.24 1.23 4.37

10 402 4 �0.85 0.87 1.32

For each data set, n is the no. of trees and m is the no. of leaves
sampled per tree. In each orchard, trees were approximately equally
spaced on a grid, and in Þtting the spatial GLMM distance is measured
in tree-separation units. Note that in the second data set (orchard 5)
mites were present on nearly every sampled leaf.

Fig. 4. ASN curves for the expected number of sampled trees in BartlettÕs SPRT. The number of leaves sampled per tree,
m, ranges between three (upper curve), 4, 6, 8, 10, 12, 14, and 16 (lower curve).
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conservatively treat a grove for which treatment is
not required.

This simulation study conÞrms the effectiveness of
the proposed methodology for the range of parameter
values appropriate to O. perseae. In particular, the
methodology proposed here eliminates the need for
an initial pilot sample as suggested by Li et al. (2012).

Discussion

The ultimate purpose of developing a sampling plan
is to provide an easy to use tool for pest managers to
use to allow them to quickly and accurately reach
decisions on whether or not avocado orchards need to

be treated forO. perseae, an important foliar mite pest
of avocados in California, Mexico, Costa Rica, Spain,
and Israel. Because a reliable sampling tool does not
exist, integrated pest management (IPM) programs
for O. perseae in California are relatively nonexistent
and it is likely that numerous pesticide applications are
applied annually for the control of this pest when they
are not needed. Analysis of pesticide use trends in
California avocados shows a remarkably rapid in-
crease in pesticide applications after the invasion ofO.
perseae in 1990 (Hoddle 2004), and the adoption of a
sampling plan similar to that proposed here may help
reverse this trend by reducing the rate of unnecessary
applications for this pest.

Fig. 5. ASN curves for the expected number of sampled leaves in BartlettÕs SPRT. The number of leaves sampled per tree,
m, ranges between three (lower curve), 4, 6, 8, 10, 12, 14, and 16 (upper curve).

Fig. 6. Expected sampling cost versus the number of leaves selected per tree,m, where the leaf-tree sampling cost ratio,

c �
cost per leaf

cost per tree
, ranges between 0.01 (lower curve), 0.10, 0.25, and 0.50 (upper curve).
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The work presented here is the Þrst statistical ap-
plication of spatial analyses coupled with sequential
sampling for the development of a sampling plan for
pest management. Our proposed presence-absence
sampling methodology for O. perseae evaluates a se-
quential hypothesis test of pest population densities
which, 1) accounts for aggregation of pest populations
on individual trees, and 2) mitigates spatial correlation
of pest populations on adjacent trees using a tree-
selection rule that sequentially selects trees to be
maximally spaced from all other previously selected
trees (sequential, maximin tree-selection). Based on a
simulation study we determined that the expected

sampling cost is essentially minimized with a random
selection of m � 6 leaves per tree, and based on a
separate simulation study of BartlettÕs SPRT with 10%
Type-1, 2 error rates, we demonstrated that the se-
quential, maximin tree-selection rule preserves the
error rates in the presence of spatial correlation, with
average sample numbers for the sequential test being
5Ð10 trees. Although our results demonstrate the ef-
fectiveness of our presence-absence sampling meth-
odology for parameter estimates relevant to O.
perseae, the methodology can easily be applied to
other pests, and even other nonpest spatial sampling
situations. Furthermore, although it is not the focus of

Fig. 7. Observed Type-1 error rates for BartlettÕs SPRT for data simulated with correlation parameter 	. The solid curve
corresponds to the sequential, maximin tree-selection rule, the dashed curves correspond to the patterned and SRS
tree-selection rules, and the horizontal dotted line is the theoretical error rate upper bound of � � 0.10.

Fig. 8. Observed Type-2 error rates for BartlettÕs SPRT for data simulated with correlation parameter 	. The solid curve
corresponds to the sequential, maximin tree-selection rule, the dashed curves correspond to the patterned and SRS
tree-selection rules, and the horizontal dotted line is the theoretical error rate upper bound of  � 0.10.
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this article, we brießy point out that the spatial mod-
eling and sample plan development may be relevant to
other aspects of pest management such as sampling for
plant diseases (van Maanen and Xu 2003, Kelly and
Guo 2007). For example, Perring et al. (2001) and
Groves et al. (2005) demonstrated the importance of
spatial analyses for understanding the distribution of
the disease-causing bacterium, Xyllela fastidiosa,
which is vectored by cicadellids feeding on grapes and
almonds. However, these studies do not directly ad-
dress the manner in which sampling should be con-
ducted. Consequently, the development of spatial
models that provide an unbiased snapshot of inci-
dence levels across sampled blocks, similar to that
presented here, may have utility beyond sampling for
aggregated populations of pest mites in orchards.

The results of the simulations conducted here dem-
onstrate the effectiveness of our spatial presence-ab-
sence sampling methodology for parameter estimates
relevant to O. perseae in California avocado orchards.
With further research involving Þeld validation, our
sampling model has the potential to be customized as
a reliable decision-making tool for pest control advis-
ers and growers to use for control of this mite in
commercial avocado orchards. To meet this goal, soft-
ware would be needed to help a pest manager with
tree selection and with evaluating the treatment de-
cision hypothesis test at each sequential step. A com-
ponent of any new technology is end-user adoption,
especially if underlying concepts appear difÞcult and
application potentially complicated. With the wide-
spread ownership and use of smart phones, sampling
programs like the one developed here could be made
available as a downloadable “application.” This has
several major attractions for users: 1) by following
simple sampling instructions on a screen (such as GPS
directions to the next tree to sample) and punching in
sampling data (yes or no for the presence or absence
of O. perseae for each sampled leaf), user uncertainty
about sampling methodology (both tree and leaf se-
lections) and correct calculations and interpretation
of outcomes are potentially minimized. 2) Smart
phone applications would return management deci-
sions in real time and can be immediately emailed to
a supervisor. Photos and GPS coordinates generated
by the smart phone could also be included in reports
if extra details are useful for decision-making. 3) All
sampling events have the potential to be archived
electronically eliminating the need for expensive trip-
licate docket books and storage space for these article
records. 4) Because the popularity of smart phone
applications is increasing, a well-developed applica-
tion that is attractive in appearance and easy to use
may help greatly with the adoption of sampling plans,
like that developed here for O. perseae, for IPM pro-
grams.

In this article we used a sampling cost function,
equation 9, which includes a Þxed cost for each tree
sampled. Future work might include a more sophis-
ticated per tree sampling cost that varies during the
sequential sampling process to account for both the
distance and the land topography between subse-

quently sampled trees, which may be of interest to a
pest manager seeking to minimize their distance trav-
eled and seeking to avoid sampling from trees that are
difÞcult to reach (e.g., trees on steep hillsides). Ad-
ditionally, the spatial GLMM model of pest popula-
tions that we used assumes that pest individuals are
distributed randomly within a tree, and that correla-
tions of pest populations on adjacent trees are spatially
symmetric. Future research on sequential sampling
with spatial components that extends beyond these
model assumptions may address issues pertaining to
pest populations that are systematically distributed
within trees, and may include anisotropic (i.e., asym-
metric) correlation structures of pest populations, al-
lowing for stronger correlation along orchard edges or
within orchard rows (see Ifoulis et al., 2006).
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