Co-clustering Spatial Data Using a
Generalized Linear Mixed Model With
Application to the Integrated Pest
Management

Zhanpan Zhang, Daniel R. Jeske,
Xinping Cui & Mark Hoddle

Journal of Agricultural, Biological,
and Environmental Statistics

ISSN 1085-7117

Volume 17 i

Number 2 : Journa.l Of
JABES (2012) 17:265-282 Agncultural,

DOI 10.1007/513253-012-0089-7 . .
Biological and

Environmental

Statistics

Available
online

@ Springer



Your article is protected by copyright and all
rights are held exclusively by International
Biometric Society. This e-offprint is for
personal use only and shall not be self-
archived in electronic repositories. If you
wish to self-archive your work, please use the
accepted author’s version for posting to your
own website or your institution’s repository.
You may further deposit the accepted author’s
version on a funder’s repository at a funder’s
request, provided it is not made publicly
available until 12 months after publication.

@ Springer



Co-clustering Spatial Data Using
a Generalized Linear Mixed Model With
Application to the Integrated Pest
Management

Zhanpan ZHANG, Daniel R. JESKE, Xinping CUI, and Mark HODDLE

Co-clustering has been broadly applied to many domains such as bioinformatics
and text mining. However, model-based spatial co-clustering has not been studied. In
this paper, we develop a co-clustering method using a generalized linear mixed model
for spatial data. To avoid the high computational demands associated with global op-
timization, we propose a heuristic optimization algorithm to search for a near optimal
co-clustering. For an application pertinent to Integrated Pest Management, we combine
the spatial co-clustering technique with a statistical inference method to make assess-
ment of pest densities more accurate. We demonstrate the utility and power of our pro-
posed pest assessment procedure through simulation studies and apply the procedure
to studies of the persea mite (Oligonychus perseae), a pest of avocado trees, and the
citricola scale (Coccus pseudomagnoliarum), a pest of citrus trees.

Key Words: GLMM,; Heuristic optimization; Integrated pest management; Spatial co-
clustering.

1. INTRODUCTION

The clustering methodology developed in this paper was motivated by a desire to im-
prove the methodologies used by Integrated Pest Management (IPM) practitioners. IPM
is an approach to managing pests by combining biological, cultural, physical and chemi-
cal tools in a way that minimizes economic losses, while simultaneously reducing human
health and environmental risks. Traditional IPM practices are typically based on a hypoth-
esis test about a parameter 6 that reflects the pest density within a large block of trees in
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an orchard, such as the mean or median number of pests on each tree. The hypothesis test
is formulated as Hy : 0 <0, vs. H, : 6 > 0., where 6, is a critical economic threshold for
which the cost of treatment is equal to the cost of no treatment. Not rejecting Hy would
indicate no treatment intervention is required, whereas rejecting Hy would call for treat-
ment in an attempt to ward off serious crop loss (e.g., spraying pesticides or the release of
natural enemies for pest control). With the current practices, if pesticides are deemed nec-
essary they are applied to the entire block rather than localized to smaller regions within
the block. Hence, consistent with the goal of reducing unnecessary pesticide applications, a
more targeted procedure that identifies smaller localized regions with high pest infestations
would be useful. To meet this goal, we develop a spatial co-clustering methodology.

Co-clustering, also called biclustering, bivariate clustering, or two-mode clustering, has
been broadly applied to many domains such as bioinformatics and text mining. Usually
data are arranged in a matrix with rows and columns, and each cell of this matrix is a real
number. Different from the one-dimensional clustering methods that seek to identify simi-
lar rows and columns independently, co-clustering seeks to take advantage of dependencies
by simultaneously clustering rows and columns. Busygin, Prokopyev, and Pardalos (2008),
Madeira and Oliveira (2004), Mechelen, Bock, and Boeck (2004), and Prelic et al. (2006)
provided detailed reviews on co-clustering. However, there is very little literature about
model-based co-clustering, and none of the literature has proposed a spatial co-clustering
technique. Unlike the bioinformatics and text mining co-clustering applications, spatial co-
clustering applications require that the co-clusters consist of spatially consecutive rows and
columns.

The rest of this paper is organized as follows. Section 1 concludes below by introducing
the application that motivated our work. In Section 2, we introduce a generalized linear
mixed model (GLMM) for count data that provides for spatial correlation. We then de-
velop a methodology to identify co-clusters from a grid sample of data that follow this
GLMM. To avoid the high computational demands associated with global optimization,
we propose a heuristic optimization algorithm to search for a near optimal co-clustering.
The performance of the heuristic optimization algorithm is discussed. In Section 3, we
incorporate the co-clustering methodology within an Integrated Pest Management (IPM)
framework. Specifically, we combine the co-clustering methodology with a statistical in-
ference procedure to propose a method for identifying regions within an orchard that need
pest treatment. Finally, in Section 4 we illustrate an application of our proposed method-
ology using studies of the persea mite (Oligonychus perseae), a pest of avocado trees, and
the citricola scale (Coccus pseudomagnoliarum), a pest of citrus trees.

2. METHODOLOGY

2.1. GLMM FOR CO-CLUSTERING
2.1.1. Model Definition

Consider an r x ¢ spatial grid in which each grid point is a potential sampling site.
By simultaneously dividing rows and columns into a number of contiguous and disjoint
groups, we obtain a checkerboard structure within the grid. Each of the groups is referred to
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Figure 1. Checkerboard co-cluster structure.

as a co-cluster and the ensemble of co-clusters is called a co-clustering. For a co-clustering
that has n groups of rows and m groups of columns, we use the term “nomenclature”
to refer to the n x m checkerboard structure. We use the term “design” to refer to the
specific rows and columns within a given nomenclature. Referring to Figure 1, a specific

design within an n x m nomenclature is denoted by (i1, i> —i1,...,in —in—1) X (J1, j2 —
J1s-++s jm — jm—1). Note that there exists a many-to-one mapping between designs and
nomenclatures.

The GLMM we propose for co-clustering according to a checkerboard structure is

Yj(,-)|sifr51Negative Binomial(6;,x), i=1,2,...,nm,j=1,2,...,n;;
log(6;) =+ si; (2.1)
S=(51,52,..., Snm)/ ~ MVN(O’ Gzlmn);

where Y ;) is the count number from the jth sampling unit in the ith co-cluster, n; is the
number of sampling units in the ith co-cluster, 6; is the conditional (on s;) mean of counts
associated with the ith co-cluster, k represents an overdispersion parameter, u is a fixed
intercept effect, and s; is a random effect associated with the ith co-cluster, and I,,, is the
identity matrix of size nm.

2.1.2. Model Justification for IPM Application

Recent literature has shown that pest density levels are influenced by spatial popu-
lation dynamics. For example, spatial analyses have been applied in studies of agricul-
tural pests attacking lentils (Schotzko and O’Keeffe 1989), corn and alfalfa (Williams,
Schotzko, and McCaffrey 1992), cotton (Gozé, Nibouche, and Deguine 2003), and grapes
(Ifoulis and Savopoulou-Soultani 2006; Ramirez-Ddvila and Porcayo-Camargo 2008).
Typically, spatial analyses of pest density populations have been conducted by trans-
forming pest counts to approximately satisfy the normality assumption. GLMMs (Bres-
low and Clayton 1993) are a more natural way to describe pest counts, and through
the correlations introduced by their random effects they can be used to model various
types of spatial correlation. Our use of GLMMs to develop a model-based spatial co-
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clustering methodology differs from a variety of ways GLMMs have previously been used
in studies of pest populations (Barchia, Herron, and Gilmour 2003; Bennett et al. 2008;
Bianchi, Goedhart, and Baveco 2008; Candy 2000; Elias et al. 2006; Elston et al. 2001;
Paterson and Lello 2003; Takakura 2009).

Consider now the independence assumption in (2.1) for the random effects. Insects who
are in search of food tend to invade orchards by establishing small populations in random
areas. The haphazard and often diffuse initial settlements of high density populations in
small areas are referred to by pest management specialists as “hot spots.” IPM procedures
are carried out before or at the outbreak of hot spots, before they blend together to form
larger clusters with smoother densities, by which time economic damage in the orchard
will be so severe that mitigation measures will be ineffective. The existence of hot spots is
more compatible with the checkerboard spatial correlation structure implied by (2.1) than
it would be with smooth structures often seen in other spatial applications (e.g., Gotway
and Stroup 1997).

2.1.3. Likelihood and Parameter Estimation

It follows from standard GLMM principles (McCulloch, Searle, and Neuhaus 2008) that
the log-likelihood corresponding to (2.1) is

nm

, B oo [ i T'(yjiy+«) )( K )K
U o% k) _Z[log/_w(n<r(m+1)r(fc) exp(u +5i) +«

i=1 j=1

X( exp(i + i) )ym (oxp(=s7/Q0?)
exp(u + i) + « V2mo? l

nm nj F(y/(,)+K) ) nm [/OO( K )nl’K
= log| — /W T8 1
2.2 Og(F(ijH)F(K) +; %8 ) \exp(u+s0) +¢

i=1j=1

) <M)Z?ilwmwd&} (2.2)

exp(p + i) +« N 2ro?

Equation (2.2) involves nm one-dimensional integrals, each of which can be approxi-
mated as a weighted sum by the method of Gauss—Hermite quadrature:

nm nj F()"(i) +K) )
/ 2 ~ 1 _ VO TR
(o)~ 2 Og(F<y,~<,~>+1)F(K>

i=1 j=1

— exp(u +v202%x4) + «

( exp(u + v202x4) )ng' YO wy ) 23)
X — ] |, .
exp(u +v202x,) + « T

where x;’s and wg’s (d =1, 2, ..., D) are the quadrature nodes and weights, respectively.

Quadrature with D = 30 is usually enough for a good degree of approximation (McCul-
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loch, Searle, and Neuhaus 2008), and we use that in all of the calculations in this paper.
Then (2.3) can be maximized numerically to obtain the MLEs of (u, 02, k), denoted as
(A, 62,k).

2.2. CO-CLUSTERING ALGORITHMS

2.2.1. Global Optimization

We define the optimal design to be the one with the maximum log-likelihood among
all the possible designs. To avoid co-clusters that are too small, we specify the minimum
co-cluster size to be rg x cg (rg > 1 and ¢p > 1). A global optimization algorithm (GOA)
would identify all possible designs for every possible nomenclature, and select the global
optimal design as the one that maximizes /(u, o2, K).

Zhang (2011) shows that the number of designs that need to be examined when search-
ing for the global optimal design is

ol (/4
1
n=2

| nifr S (-Gt tin-1
T2 (_1)l<i) 2 ( poio1 )
i=1

J1sJ2snji=1

/ol (/.4
1
m=2

= m\ S [e—Gititotin—1

~1) ST R U . Q4

+Z ( )<i),,z, ( i (2.4)
i=1 J1 g2 ji=1

To illustrate, for a spatial grid of size 80 x 80 and a minimum co-cluster size of 12 x

12, the number of possible designs is 382,241,601. The enormous number of candidates
usually makes it infeasible to exhaustively search for the optimal design.

2.2.2. Heuristic Optimization

To circumvent the computational complexity associated with global optimization, we
propose the following heuristic optimization algorithm (HOA):

(1) Starting with the original spatial grid, fit the GLMM to each of the designs asso-
ciated with the 1 x 2 and 2 x 1 nomenclatures. Identify the design with the maxi-
mum [(f1, 62, &) as the “Current Optimal Design” and denote its log-likelihood by
I*(, 62, %).

(2) Starting with the “Current Optimal Design”, fit the GLMM to each of the designs
with the nomenclature that has either one more row group or one more column
group than the “Current Optimal Design.” Identify the design with the maximum

(1,62, k) as the “Potential Optimal Design” and denote its log-likelihood is by
(6% 80).
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Figure 2. Heuristic optimization vs. global optimization.

A

(3) If 1%, 62, k) > I*({u, 62, k), replace the “Current Optimal Design” with the “Po-
tential Optimal Design” and repeat Step 2; otherwise, stop the procedure and report
the “Current Optimal Design” as the heuristic optimal design.

2.3. COMPARATIVE ANALYSIS
2.3.1. Heuristic vs. Global Optimization

To study the effectiveness of our proposed HOA, we performed a simulation study to
compare it to the GOA according to Steps 1-5 in Simulation Design 1 shown in Table A.1
of Appendix A. Results are summarized in Figures 2(a) and 2(b) which show the success
rates for the reported nomenclature and design for different (k, ) scenarios.

In this simulation study, the number of designs evaluated in the global optimization
algorithm is 2937, whereas the average number of designs evaluated in the heuristic opti-
mization algorithm is 85. From either Figure 2(a) or 2(b), we see the success rate of the
nomenclature or design for the HOA is not that much lower than that for the GOA. Also, the

2

success rates increase as o~ increases, which indicates that greater difference among true

co-clusters improves the chance of retrieving the true design or nomenclature. We also see
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that success rates increase as k increases, meaning that less conditional variability within
true co-clusters also improves the chance of capturing the true design or nomenclature.

To further compare HOA with GOA, we define “nomenclature consistency” to be the
proportion of times that the two algorithms report the same nomenclature (which may
or may not be same as the true nomenclature). Given that the two algorithms report the
same nomenclature, the number of shifts in the row and column separation lines that are
needed in order to match the two reported designs can then be used as a measure of “design
proximity.” To study nomenclature consistency and design proximity, we performed the
simulation study described by steps (1-3, 4-5") in Simulation Design 1 that is shown
in Table A.1 of Appendix A. Figures 2(c) and 2(d) shows results for different (x, o)
scenarios.

From either Figure 2(c) or 2(d) we notice the nomenclature consistency is very high,
meaning that very often both the GOA and HOA report the same nomenclature. In addition,
given the same reported nomenclature, the average design proximity is very small (less
than 2). These results demonstrate the HOA can perform very well as a surrogate for the
GOA.

2.3.2. Sampling Issues

Concerning time and the cost of human resources, practitioners usually do not exhaus-
tively sample the full set of grid points. If simple random sampling is used, it is very likely
that specific areas of the spatial grid will not be represented in the sample. In this case,
we can anticipate that some of the resulting co-clusters will not have been sampled and in
some applications, such as the one we discuss in Section 3, this can lead to loss of precision
in subsequent inference procedures.

Recall that the minimum co-cluster size is rg X cg. To ensure at least one grid point is
taken from each co-cluster, we could start by sampling the grid point located in the first
row and the first column, and then sample a grid point every rp rows along the row di-
mension and every co columns along the column dimension. This strategy is illustrated in
Figure 3(a) for the case 40 x 40 with a minimum co-cluster size of 6 x 6. Note, however,
two designs that differ in terms of where their column and row separation lines are posi-
tioned but otherwise have the same configuration of sampled points in their co-clusters will
have identical likelihood values.

To minimize the number of co-cluster configurations that have identical likelihood val-
ues, we propose the sampling strategy shown in Figure 3(b) in which each sampled grid
point is shifted one more row than the previously sampled grid point along the column
dimension, and shifted one more column than the previously sampled grid point along the
row dimension. By following this shifted pattern, a few more grid points will be sampled
from the top-right and/or bottom-left corner of the spatial grid to ensure at least one grid
point is sampled from each co-cluster. Compared to the even sampling scheme, without sig-
nificantly increasing the sample size the shifted sampling scheme minimizes the number
of rows and columns that are not represented by at least one sampled grid point. Conse-
quently, the shifted scheme reduces the number of designs that have identical likelihood
values and will have more discriminatory design power than the even sampling scheme.
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Figure 4. Success rate of design vs. sample size.

For a specified minimum co-cluster size, the proposed sampling strategy seeks to op-
timize the discriminatory design power and minimize the sample size subject to the con-
straint that at least one grid point is sampled from each co-cluster. When practitioners can
afford to sample more grid points, the sample size can be increased by replacing ro with a
smaller “row step” r* (1 <r* < rg) and ¢¢ with a smaller “column step” ¢* (1 < ¢* < ¢g)
such that any r* x ¢* sub-grid contains at least one sampled grid point. For example,
r* = c* =4 leads to 108 sampled grid points in Figure 3(b) for the shifted sampling strat-
egy, as compared to 46 sampled grid points if no reduction in row and column steps was
implemented.

The simulation study described by Simulation Design 2 (shown in Table A.2 of Ap-
pendix A) was performed to evaluate how non-exhaustive sample sizes affect the success
rate of the design. The results are summarized in Figure 4 which shows the relationship
between success rate of the design and the sample size. From either Figure 4(a) or 4(b),
we see the success rate of the design increases as the sample size increases and the success
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rate of the design for the shifted sampling strategy is much higher than that for the even
sampling strategy. Also, similar to what we saw in Figure 2, we see that the success rate
increases as o2 increases.

3. APPLICATION TO PEST DENSITY ASSESSMENT

3.1. PROPOSED METHODOLOGY

We consider an application to assess orchards of fruit-bearing trees for a potential pest
problem. Our goal is to identify the infested regions within orchards that require treatment
such as spraying pesticides or, alternatively, the release of natural enemies. Trees within
orchards are frequently organized in a spatial grid. We assume that pest counts are available
from a sample of trees based on the shifted sampling strategy described in Section 2.3.2.
Our proposed methodology consists of first using the HOA on the sampled data to obtain
the heuristic optimal design of the orchard. Then, in a second step we analyze the data
further, as described in the next section, to make a decision on whether pest treatment
intervention is required.

3.2. INFERENCE-BASED TREATMENT DECISIONS

For each co-cluster that results from the HOA, we use the model in (2.1) to predict its
conditional mean 6; =exp(u +s;) (i =1,2,...,nm). It is shown in Appendix B that the
Best Linear Predictor (BLP) is

6; = BLP(6;)
exp(u +02/2)(exp(0?) = 1) - YL yja) +expQu+207) [k +exp(p +0?/2)
a exp(i +302/2) /i + 1+ niexp(u + 02/2)(exp(a?) — 1)

3.1)
and that the variance of log§; — log6; is
Var(log 6; —log6;) ~ {n; exp(2e + ) (exp(0'2) — 1)*[exp(02/2 — 1) + 1/k]
+exp(202) (exp(0?) — 1)[exp(u + 302/2) /ic + 1]}
= [exp(ie +302/2) /k + 1 +n; exp(p + 02/2) (exp(c?) — l)]z.
3.2)

Replacing (u, 02, k) with the MLEs (2,62, %) in (3.1) and (3.2) gives the empirical
Best Linear Predictor (eBLP), say 5,~, and the estimated variance of log6; — log#;, say
\/lar(log g; — log ;).

Define U; = (logéi - logei)/\/@(logéi —log6;) and let U; o be the 100(1 — «)th
conditional percentile of U; given s. Then a 100(1 — «) % lower conditional prediction

bound for log6; is

Lo(log6;) =logh; — U,-,a\/ﬁr(logéi —logh;), (3.3)
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Figure 5. Probabilities of correct decision.

and a 100(1 — &) % lower conditional prediction bound for 6; is

Lo(6) = 5,-/exp[U,-,a\/\75r(1ogé,- —loghi)]. 3.4)

For a pre-specified threshold 6., the decision of “Treat” is made if Ly (6;) > 6.; other-
wise the decision of “Do Not Treat” is made. The value of U; 4 in (3.3) and (3.4) can be
approximated from the parametric bootstrap algorithm described in Appendix C.

A simulation study was conducted to verify the coverage probabilities based on the
bootstrap estimates of U; , were satisfactorily close to nominal. When the number of co-
clusters of the heuristic optimal design is relatively large, we may adjust the significance
level « to form the simultaneous lower conditional prediction bounds of the conditional
means for co-clusters, such as by the method of Bonferroni correction or Sidak correction
(Olejnik et al. 1997).

3.3. PERFORMANCE ANALYSIS

To evaluate the proposed pest assessment procedure outlined in Section 3.1, we per-
formed a simulation study according to Simulation Design 3 that is shown in Table A.3
of Appendix A. We selected a = 0.05 and chose the critical economic threshold of
6. = 500 based on the analyses discussed in Section 4.1. The simulation provides estimates
of the conditional probabilities P; = P (Correct decision|Truth is “Do Not Treat”), P, =
P (Correct decision|Truth is
“Treat”), and the unconditional probability Py = P (Correct decision). The results are sum-
marized in Figure 5, from which we notice all of Py, P1 and P, increase as the sample

2 increases. The relatively high values, for moder-

size increases, and also increase as o
ate sample size and o2, demonstrate the practical utility of our proposed pest assessment

procedure.
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4. ILLUSTRATION

4.1. PERSEA MITES AND AVOCADO TREES

Persea mite (Oligonychus perseae) is an avocado leaf feeding pest that is native to Mex-
ico and is a serious invasive pest in California (USA), Costa Rica, Israel, and Spain (Hoddle
2005). When pest populations build to sufficiently high densities leaves begin to drop from
trees. To avoid premature leaf dropping some type of control procedure may be warranted
(e.g., pesticide applications, or releases of commercially available natural enemies, like
predatory mites that eat the pest).

A data set of mite counts is available from a pilot monitoring study conducted in the
Summer of 2009 at a large commercial avocado orchard located near Carpenteria, Cali-
fornia, USA. Trees in this orchard are planted on a large grid structure. The available data
were obtained by sampling all the trees on a small 5 x 12 grid. Eight leaves were collected
from each tree, and their sum provided a pest count for each sampled tree.

Using a minimum co-cluster size of rg x cop = 2 x 3 and applying the HOA, we obtained
the heuristic optimal design as shown in Figure 6(a), in which four co-clusters are separated
by the thick dark column separations. The 95 % lower conditional prediction bound of the
conditional mean for each co-cluster is positioned at the top of each co-cluster. Using a
critical threshold of 6, = 500 (see Maoz et al. 2011), it is clear that three of the co-clusters
require treatment.

4.2. CITRICOLA SCALES AND CITRUS TREES

In the previous illustration, exhaustive sampling was carried out over a relatively small
region within the orchard. This illustration reflects non-exhaustive sampling, which is more
typical within large orchards. The citricola scale is a pest of citrus in California’s San
Joaquin Valley. They are almost microscopic in size and have a one year life span. Each
female citricola scale can lay between 1000 and 1500 eggs after which its body covers and
protects the eggs until they hatch. A study in Shah (2006) presents citricola samples that
were collected from blocks of orange trees that were laid out on a spatial grid. In that study,
individual blocks were considered as treatable units. We reconsider those data to illustrate
how our co-clustering methodology identifies more focused hot spots within a block.

Two of the blocks sampled by Shah (2006) were laid out on a spatial grid. These were
blocks sampled from the Rolling Hills and Porterville orchards. Figures 6(b) and 6(c) show
these blocks, where the cells with numbers in them are the locations of sampled trees. From
each of the sampled tree, approximately equal-sized twigs were drawn from the bottom half
of the tree, facing north, based on a-priori information that the citricola scale has a slight
preference for this part of the tree. The number of scales found on each sampled twig was
then counted and these data are the numbers shown in Figures 6(b) and 6(c).

In our analysis, we used a minimum co-cluster size of ry x cop =5 x 5 for the Rolling
Hills block and ¢ x ¢y =4 x 5 for the Porterville block. The GOA would require evalu-
ating 994,296 and 760,344 designs, respectively, for these two cases. The HOA produced
nomenclatures of size 2 x 5 for both blocks, as indicated by thick dark row and column
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1154|332 |3318| 388 | 187 | 415 | 8259 | 791 |1847]1554|3595|3403

363211288 481 | 120 | 121 | 958 | 5647 |1075|1513]1994| 628 |1066

322111259(5261] 599 | 1182 172 13621 |8592|5431]1566|2052 (5982

1519| 843 (3577|517 | 307 | 177 |18344{2365|6828| 336 |4411|3515

6371(1730(5592| 254 | 228 (5288|2604 | 452 [3856] 693 |2899| 408

(a) Counts of persea mites at 60 avocado trees laid out as a 5x12 spatial grid in a
Carpenteria, CA orchard. Numbers adjacent to the identified co-clusters are the 95% lower
conditional prediction bounds for the conditional means.

0.777 0.002 0.027 0.385 0.001
2 0 0 0 1 0 0 1 1 0
1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 8 10 1
0 0 0 1 1 1 3 5 3 2
0.001 0.002 0.508 5.124 0.777

(b) Counts of citricola scales at 40 orange trees from a block laid out as a 20x44 spatial
grid in the Rolling Hills, CA orchard. Numbers adjacent to the identified co-clusters are the
95% lower conditional prediction bounds for the conditional means.

0.003 10.098 0.508 0.007 0.205
0 14 0 2 1 0 0 1 1 0
0 4 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 0 0 0
1 2 1 0 0 3 0 0 0 0
0.099 1.308 0.322 1.045 0.0003

(c) Counts of citricola scales at 40 orange trees from a block laid out as a 16x44 spatial
grid in the Porterville, CA orchard. Numbers adjacent to the identified co-clusters are the
95% lower conditional prediction bounds for the conditional means.

Figure 6. Pest treatment decision.
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separations. The number of designs examined by the heuristic algorithm was 164 and 169,
respectively. As discussed in Section 2.3.2, if different designs are obtained by moving the
nomenclature boundaries without changing the co-cluster membership of sampled trees,
the designs will have identical likelihood values. We can see in Figures 6(b) and 6(c)
that due to the even sampling strategy used by Shah (2006), there are several likelihood-
equivalent designs returned by the HOA.

Also in Figures 6(b) and 6(c), we have positioned the 95 % lower conditional prediction
bound next to each co-cluster. To-date, a definitive critical economic threshold, 6., for the
number of Citricola scales on a sampled twig is not well known. However, it is known
that the tolerance for early appearance of the insect in the San Joaquin Valley is extremely
low due to the fact there are no natural enemies of the insect in that region of California.
Consequently, for illustrative purposes suppose 0.5 is used as the threshold. It would follow
that four co-clusters in each of the blocks in Figures 6(b) and 6(c) would be deemed as in
need of treatment.

As point of comparison, we also ran the GOA on the data from the Rolling Hills and
Porterville blocks. In the Rolling Hills case, the result was the same 2 x 5 nomenclature
obtained from the HOA, and the design was also the same up to small perturbations in the
column and row separations that have no affect on the log-likelihood value (whose value
was —45.68 for both algorithms).

In the Porterville case, the GOA returned a 2 x 6 nomenclature, compared to the 2 x 5
nomenclature returned by the HOA. Examining Figure 6(c), an additional column separator
was added to isolate the third column of samples from the fourth and fifth columns of
samples. The co-cluster identified with a 95 % lower conditional prediction bound of 0.508
is split into two co-clusters with bounds of 0.006 and 0.895, and the co-cluster with a 95 %
lower conditional prediction bound of 0.322 is split into two co-clusters with bounds of
0.548 and 0.145. These are relatively minor changes, and this is reflected by the fact the
log-likelihood value for the HOA is —43.33 compared to —42.87 for the GOA.

S. DISCUSSION

Our proposed model-based co-clustering method showed a significant utility and power
in searching for the optimal co-clustering on a spatial grid. Combining the spatial co-
clustering technique with a statistical inference method, our proposed pest assessment pro-
cedure also showed an excellent performance in identifying the infested regions within
orchards. Only treating the infested regions instead of the whole orchard can reduce pest
management costs and minimize potential hazards to the environment. Although these
methods were developed to analyze the pest data collected from perennial tree orchards,
we anticipate that this general approach will have utility for a wide range of investigations
involving spatial information.

In this paper we used a GLMM to capture correlation within co-clusters, and as dis-
cussed in Section 2.1.2, assumed all the co-clusters to be independent of each other. Al-
though this assumption makes much practical sense with our application, we will further



278 Z.ZHANG ET AL.

consider a GLMM that captures both correlation within co-clusters and correlation be-
tween co-clusters as future work. Furthermore, more flexible co-cluster structures will be
investigated for the spatial grid in future work, such as the “tree” co-cluster structure that
was considered in Hartigan (1972), which is considered the first co-clustering paper.

APPENDIX A: SIMULATION DESIGNS

Parameter values used by the simulation designs discussed in this appendix were moti-
vated by the avocado application involving persea mites that is discussed in Section 4.1.

Table A.1. Simulation Design 1.

1. Consider a 40 x 40 spatial grid, a 3 x 3 nomenclature and the (10, 17, 13) x (13, 15, 12) design. Choose the
minimum co-cluster size to be rg x c¢g =10 x 12.

2. For 1 = 6 and selected values of («, o'2), simulate count data for each point on the spatial grid according to
the negative binomial model and the design selected in Step 1.

3. Apply both the GOA and the HOA to the simulated data.

4. For each algorithm, check whether the true nomen- 4/, Determine whether the two algorithms agree on
clature and design that were specified in Step 1 were the nomenclature. If the two nomenclatures are the
retrieved. same, evaluate the design proximity metric.

5. Repeat Steps 2-4 1000 times, and for each algo- 5’. Repeat Steps 2—4’ 1000 times and evaluate the pro-
rithm, record the success rates for the reported op- portion of times the two nomenclatures agree and
timal design and nomenclature. the average design proximity.

Table A.2. Simulation Design 2.

1. Same as Step 1 in Table A.1.

2. For (u, k) = (6, 3) and a selected value of o2, simulate count data for each point on the spatial grid according
to the negative binomial model and the design selected in Step 1.

3. For selected values of (r*, c*) (to vary the sample sizes), sample grid points according to both the even and
shifted sampling patterns.

4. Apply the HOA to the sampled data.
5. Check whether the true design that was specified in Step 1 was retrieved.

6. Repeat Steps 2-5 1000 times and evaluate the success rate of the retrieved design.
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Table A.3. Simulation Design 3.

1. Same as Step 1 in Table A.1.

2. For (u, k) = (6,3) and a selected value of o2, simulate count data for each tree in the orchard according to
the negative binomial model and the design selected in Step 1. Record the conditional means (6;’s) of the nine
true co-clusters.

3. For selected values of (r*, c*) (to vary the sample sizes), take a sample of trees according to the shifted
sampling pattern.

4. Apply the HOA to the sampled data.

5. Calculate Ly (6;) for each co-cluster of the heuristic optimal design (i =1, 2, ..., M), where M is the number
of co-clusters of the heuristic optimal design that may be different from the nine true co-clusters.

6. By comparing the conditional means (6;’s) of the true co-clusters with 6, = 500, determine the true treatment
status of trees within the true co-clusters, saying “Treat” if 6; > 6., and “Do Not Treat” otherwise.

7. By comparing the L ¢5(6;)’s (i = 1,2, ..., M) with 6, = 500, determine the decided treatment status of trees
within the i’ co-cluster of the heuristic optimal design, saying “Treat” if L o5(6;) > 6., and “Do Not Treat”
otherwise.

8. Evaluate each tree with respect to its true treatment status and its decided treatment status and assign it into
the appropriate cell of a 2 x 2 confusion matrix.

9. Repeat Steps 2-8 1000 times and accumulate all the comparisons of Step 8 into a pooled 2 x 2 misclassification
table.

APPENDIX B: DERIVATION OF 5,- = BLP(6;) AND
Var(logf; —log¥;)

For j=1,2,...,n;, we have
Cov(exp(i + 5i), yi) = exp(2u + 02)(exp(a2) —1)-1,, (Al)
where y; = (1), ¥2(i)» - - - » Yn; (1)) > and 1, is the n;-tuple column vector of all 1’s.

For j,j'=1,2,...,n; and j # j', we have
Var(yji)) = exp(2u + 202)//( + exp(p + 02/2) +exp(21 + 02) (exp(az) —1),
Cov(yj), i) =exp(2 +0°) (exp(o?) — 1).

Thus Var(y;) = (exp(2u +20%) /k 4+ exp(u 4+ 2/2)) - L, + expu + 02) (exp(c?) — 1) -
J}’l[7 and

1
1y} —
V) = @+ 20D/ + exp(u 1+ 97/2)
.(1 B exp(u +02/2)(exp(c?) — 1) J )
" exp(u+302/2)/k + 1+ niexp(u + 02/2)(exp(0?) — 1) )

(A2)

where 1,,; is the identity matrix of size n; and J,, is the n;-by-n; matrix with all 1’s.
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Hence, from (A1) and (A2), we have

0; = E©) + Cov(6;,y;) - Var ' (yi) - (yi — E(y))

exp(u+02/2)(exp(0?) — 1) - YL yja) +expQu+20%) [k +exp(pn + 02 /2)
B exp(i +302/2) /k + 1 + n; exp(u + 02/2) (exp(a?) — 1)

The first order of Taylor expansion of log6; around 6; gives
log; ~ log6; + (6; — 6;)/6;.
Hence
Var(log6; — log6;) ~ Var[(6; — 6;)/6;]

= E{Var[(6; — 6,)/616:]} + Var{ E[(@; — 6,)/6:16,]}

= {niexp(2ie + 02) (exp(0?) — 1)* - E(1/6; + 1/x)
+exp(2u + o) [exp(ie +302/2) /i + 1] - Var(1/6)))
+ [exp(i +302/2) /i + 1+ niexp(u + 02/2) (exp(a?) — 1)]?

= {niexp(2i + 02) (exp(0?) — 1)*[exp(02/2 — ) + 1/k]
+exp(202) (exp(0?) — 1)[exp(u + 302/2) /ic + 1]}

+ [exp(i +302/2) /ic + 1+ nj exp(pe + 02/2) (exp(o?) — 1)

APPENDIX C: PARAMETRIC BOOTSTRAP ALGORITHM
TO APPROXIMATE U; o

1. Generate an r x c spatial grid based on the heuristic optimal design.

2. Simulate insect counts from the sampled trees in the co-clusters from independent

distributions of Negative Binomial(d;, &).
3. Fit the GLMM based on the simulated counts to obtain (1*, 62*, *).

~k
4. With (i, 02, k) replaced by (1%, 62*, ©*) in (3.1) and (3.2), calculate 0; =eBLP(6;)
and Var® (log6; — log6;).

2%k o — ~
5. Calculate U = (log#; — log Gi)/\/Var*(log 0; —log¥;).

6. Repeat Steps 2-5 B = 1000 times to obtain Ul.*(l), Ul.*(z), cees ur®.

1

7. Approximate U; o, by the 100(1 — o)'h percentile of Ui*(l), Ui*(z), e, Ui*(B).

[Received June 2011. Accepted March 2012. Published Online April 2012.]
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